

Nuevo Tuboplus

para Aire Acondicionado Sistema de tubería, accesorios y conexiones Rotoplas Tuboplus Clima I Agua Helada Tuboplus. Clima | Agua Helada

Página

	Índice	Página
01	1. Tuboplus para Aire Acondicionado 1.1 Introducción	5 5
02	 Características del sistema 2.1. Campos de aplicación 2.2. Características diferenciadoras 2.3. Características técnicas 2.4. Curvas de regresión 2.5. Presiones de trabajo 2.6. Estudio de evolución de la carga microbiana y Legionella 2.6.1. Estudio de evolución de la carga microbiana 2.6.2. Estudio de evolución de la Legionella 	5 6 7 11 12 13 14 15
03	3. Resistencia a la desinfección química y térmica	18
04	 4. Dimensionado de las redes de distribución 4.1. Calidad del agua 4.2. Condiciones mínimas de suministro 4.3 Caudal de cálculo. Norma DIN 1988. Fórmulas y tabla 4.4. Equivalencia de diámetros 4.5. Aislamiento térmico 	21 21 21 23 25 27
05	 5. Pérdida de carga 5.1. Introducción 5.2. Pérdidas de carga unitarias de las tuberías 5.2.1. Pérdidas de carga unitaria de la tubería serie 3.2/SDR 7.4 5.2.2. Pérdidas de carga unitaria de la tubería serie 5/SDR 11 5.2.3. Pérdidas de carga unitaria de la tubería serie 8/SDR 17 5.3. Coeficientes de pérdida de carga φ correspondientes a los accesorios 	28 28 29 30 39 47
06	6. Criterios de instalación 6.1. Protecciones 6.2. Soportes 6.3. Dilatación térmica	49 49 49 50
07	 7. Sistemas de unión 7.1. Introducción 7.2. Unión por termofusión a socket 7.3. Unión a tope 7.4. Empleo de tapones de reparación 	56 56 56 58 63

08	8. Pruebas de presión 8.1. Preparación y limpieza de las redes 8.2. Ensayos y puesta en servicio	65 65 66
09	9. Transporte y manipulado 9.1. Transporte 9.2. Manipulado 9.3. Acopio	67 67 68 68
10	10. Calidad 10.1. Control de calidad 10.2. Normas 10.3. Certificados	69 69 70 70
11	11. Consideraciones importantes en las instalaciones 11.1. Control de calidad 11.2. Desinfección química y térmica	72 72 73
12	12. Catálogo Aire Acondicionado 12.1. Tubería 12.2. Accesorios 12.3. Accesorios mixtos soldar-roscar 12.4. Accesorios de unión a tope 12.5. Accesorios extra	74 74 75 79 82 84
13	13. Garantía	90

1. Tuboplus para Aire Acondicionado

1.1 Introducción

Nueva línea de tubería, accesorios y conexiones Tuboplus Clima | Agua Helada. Tecnología avanzada de PP-R + Fibra de Vidrio de última generación, fabricada especialmente para su uso en sistemas de climatización y aire acondicionado.

Destaca por incorporar un nuevo aditivo resistente a los procesos de desinfección mejorada contra los desinfectantes y proporciona resistencia a las grietas con excelentes resultados a largo plazo. Un aditivo antimicrobiano que evita la proliferación de bacterias y hongos en el interior de las paredes de la tubería, a la vez que contribuye a la prevención y control de la legionelosis.

Tuboplus Clima | Agua Helada está aditivado con protección UV, lo cual minimiza la degradación provocada por la exposición solar. Dispone de una amplia gama de tubería y accesorios, desde diámetro 20 a 315 mm, que garantizan cualquier propuesta constructiva para la conducción de agua, aportando una solución integral para la instalación de una red ecológica completa.

2. Características del sistema

1. Capa externa color azul con bandas blancas en PPR-CT RP resistente a los rayos UV.

La aditivación con antioxidantes de su capa externa minimiza la degradación provocada por la exposición solar

2. Capa intermedia gris en PPR-CT RP con microfibras anti-dilatación.

Garantiza la alta resistencia mecánica a la presión y a la fatiga, con un menor espesor de las paredes de la tubería, que permite la instalación de diámetros menores en comparación con otras tuberías.

3. Capa interna color blanco con aditivo resistente a la desinfección, anti-incrustaciones y antimicrobiano.

Con una una protección 100 % eficaz contra la legionella, según datos del estudio microbiológico realizado por AQM Laboratorios.

% lable

% eficaz C ntra la in

Salubre

nte Reacción al fu B-s1. d0 y libre s de halógenos

l fuego Redes con ibre de incendio

Tecnología avanzada de PPR + Fibra de

vidrio fabricada especialmente para su

uso en sistemas de climatización y aire

acondicionado

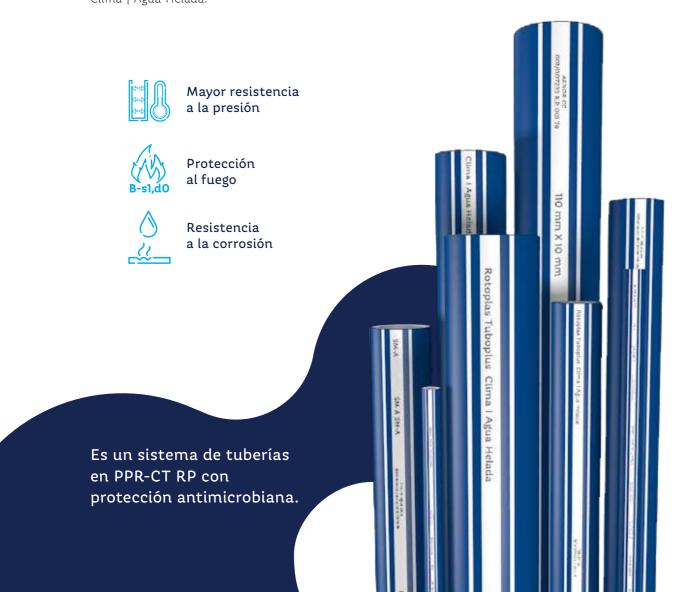
2.1. Campos de aplicación

El sistema Tuboplus Clima | Agua Helada es ideal para instalaciones en edificios residenciales, no residenciales y aplicaciones industriales.

Calefacción, climatización y refrigeración

Gracias a su alta resistencia a la temperatura y su baja conductividad térmica, el sistema es ideal para las instalaciones de calefacción, climatización y refrigeración. Reduciendo el espesor de la pared del tubo, se ofrece un aumento del caudal transportado, con gran estabilidad a la temperatura.

Industria y agricultura


Por su alta resistencia química, el sistema se adapta a distintos tipos de instalación permitiendo la conducción de diferentes agentes químicos con una excelente respuesta. Para definir su posibilidad de uso se recomienda observar la tabla de resistencias químicas anexas. En el caso de industrias alimenticias, el sistema reúne los requisitos para el contacto con alimentos según las principales normativas.

Instalaciones de aire comprimido

El sistema permite el transporte de aire comprimido y gases compatibles con la resistencia química del material.

Usos especiales

En cualquier obra que requiera el uso de tuberías con una alta resistencia a la presión, seguridad total en las uniones, facilidad y economía de instalación y una alta resistencia química, se recomienda Tuboplus Clima | Agua Helada.

2.2. Características diferenciadoras

Resistente a los procesos de desinfección

La realización de procesos de desinfección en las instalaciones, según exige la normativa, está provocando procesos de envejecimiento prematuro en los sistemas de tuberías.

La combinación de altas temperaturas y altas concentraciones de productos desinfectantes, provocan una degradación acelerada y disminuyen la vida útil de la instalación. Tuboplus Clima | Agua Helada está diseñado para cumplir con todos los requisitos técnicos para los nuevos sistemas de desinfección del agua potable, que son de obligada aplicación en la mayoría de los países. Incorpora en su capa interna un material que posee una resistencia mejorada contra los desinfectantes y proporciona una excelente resistencia a las grietas con una buena resistencia a largo plazo.

Micro fibras anti-dilatación

Los sistemas de canalización en materiales plásticos, tienen unos altos grados de dilatación debido a los cambios de temperatura del fluido.

La incorporación de microfibras reduce en un 75 % el coeficiente de dilatación. La disposición de las microfibras en malla y la incorporación de un aditivo compatibilizante, permite mejorar la resistencia mecánica del sistema.

Protección UV

Otros sistemas de tubería del mercado se deterioran si permanecen durante mucho tiempo a la intemperie debido, fundamentalmente, al componente ultravioleta de la luz solar y no disponen de protección contra estas radiaciones, por ello, no están indicados para su instalación al exterior sin una protección. Tuboplus Clima | Agua Helada está aditivado con antioxidantes que minimizan la degradación producida por la exposición solar.

Protección anti-incrustaciones

La rugosidad de las tuberías, la velocidad y la calidad del fluido, son elementos que favorecen las incrustaciones.

El aumento de las incrustaciones provoca una reducción de la sección, un aumento de la pérdida de carga y un mayor consumo energético. Tuboplus para Aire Acondicionado lleva incorporado un aditivo *anti-fulling* que provoca un efecto ultraliso, generando una protección anti-incrustaciones.

La lisura de un tubo está directamente relacionada con su porosidad y, por tanto, con su capacidad para evitar las incrustaciones o sedimentaciones calcáreas.

Las tuberías Tuboplus Clima | Agua Helada son totalmente lisas, no produciéndose reducciones de sección con el paso del tiempo, característica que garantiza la invariabilidad del coeficiente de rugosidad de la tubería.

Protección antimicrobiana

Las tuberías utilizadas para la distribución de agua potable no deben contaminar o empeorar la calidad del agua transportada, con gérmenes o sustancias que puedan presentar un peligro potencial para la salud del consumidor. Las tuberías metálicas utilizadas hoy en día en numerosos sistemas, pueden aportar óxidos al agua que faciliten la proliferación de agentes patógenos al favorecer la formación de biocapa en el interior de las paredes de la tubería.

Esta creciente preocupación por la calidad del agua en sistemas de distribución, ha introducido una mejora sustancial al incorporar un novedoso aditivo antimicrobiano que actúa de manera eficaz contra la proliferación de bacterias y hongos en el interior de las paredes de la tubería.

De este modo, la instalación de tuberías Tuboplus Clima | Agua Helada nos proporciona la seguridad de que no produce ningún aporte de nutrientes ni formación de incrustaciones donde las bacterias pueden residir y multiplicarse, contribuyendo a mantener la calidad del agua. (información ampliada en el apartado 2.6.1 Estudio de evolución de carga microbiana).

Alta resistencia al impacto

La elasticidad de este producto determina una alta resistencia al impacto muy superior a la de las tuberías metálicas. Esto preservará las tuberías tanto en su uso (golpe de ariete) como en el transporte, almacenamiento y manejo en obra.

Resistencia a la corrosión

La corrosión de las tuberías depende principalmente del medio ambiente en el que estén colocadas, del material de su fabricación y del régimen de funcionamiento al que se ven sometidas, siendo la protección exterior de la tubería la que debe de estudiarse con mayor cuidado, debido a que el medio circundante es más agresivo que el agua que circula por el interior.

Las propiedades de los tubos de Tuboplus Clima | Agua Helada no se ven alteradas ante la presencia de cales, yesos y morteros de cemento. Este hecho se traduce en que no necesita ninguna aplicación de protección superficial.

Tampoco presentan problemas de podredumbre, herrumbre, aparición de moho u oxidación, ni se ven afectados ante las algas, bacterias u hongos.

Resistencia a los agentes químicos

Los tubos Tuboplus para Aire Acondicionado, por tratarse de poliolefinas de alto peso molecular, presentan una estructura apolar, lo que les proporciona una excelente resistencia a los agentes químicos.

Gracias a su inercia química, son resistentes a los ácidos inorgánicos (clorhídrico, sulfúrico, etc.), álcalis, detergentes, aceites minerales o productos de fermentación.

No sufren ninguna alteración por efecto del agua de mar, terrenos salinos o ácidos, así como por vertidos urbanos o industriales.

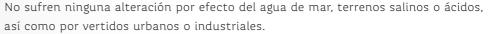
Tuboplus Clima | Agua Helada tiene mayor resistencia a la posible agresión de las aguas duras y soportan sustancias químicas con un valor de PH entre 1 y 14. lo que abarca a sustancias ácidas y alcalinas, así como también cloro, flúor o hierro contenidos en el agua.

Resistencia a la abrasión

La elevada resistencia a la abrasión de las tuberías Tuboplus Clima | Agua Helada permite la circulación del agua a altas velocidades sin problemas de erosión.

Menor nivel de ruidos en la instalación

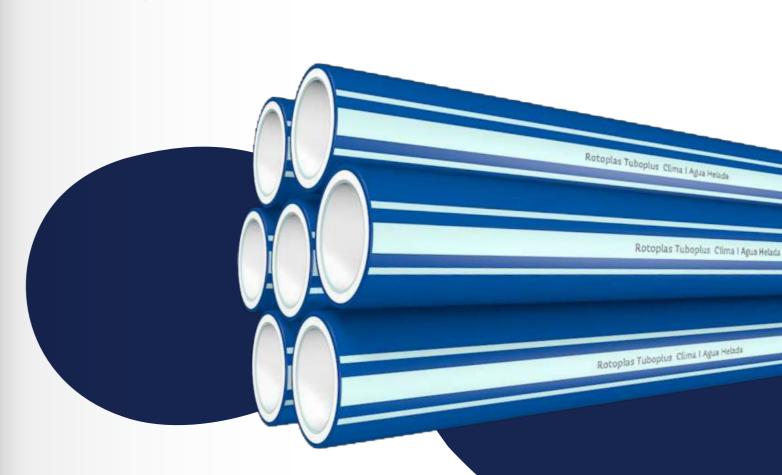
Las fono-absorción y la elasticidad del sistema Tuboplus Clima | Agua Helada evita la propagación de los ruidos y las vibraciones del paso del agua y del golpe de ariete, alcanzando así un muy alto grado de aislamiento acústico.



Por lo tanto, la transmisión de ruidos es mucho menor en comparación con las tuberías metálicas, permitiendo así mayores velocidades en la circulación del agua.

Salubridad

Los tubos Tuboplus para Aire Acondicionado, por tratarse de poliolefinas de alto peso molecular, presentan una estructura apolar, lo que les proporciona una excelente resistencia a los agentes químicos.


Gracias a su inercia química, son resistentes a los ácidos inorgánicos (clorhídrico, sulfúrico, etc.), álcalis, detergentes, aceites minerales o productos de fermentación.

Son inertes, inodoros, insípidos, inoxidables, insolubles e inocuos, cualidades óptimas para la conducción de agua potable, entre otras aplicaciones. Tuboplus Clima | Agua Helada conserva intactas las características organolépticas del agua potable sin modificar su color, olor y sabor.

Las excelentes cualidades del sistema mantiene íntegras las cualidades del agua transportada durante toda la vida útil del mismo.

Páginas | 10 · 11

Uniones seguras

La fusión molecular del material de las tuberías y accesorios (termofusión) provoca que desaparezca la unión dando lugar a una tubería continua, que garantiza el más alto grado de seguridad en instalaciones de agua fría, caliente y demás aplicaciones.

Reducción de los tiempos de instalación

Los sistemas de unión de las tuberías Tuboplus Clima | Agua Helada están basados en la termofusión o unión a tope.

La termofusión implica una reducción de los tiempos de instalación muy importante, ofreciendo la garantía total del sistema final, debido a la fusión completa de la estructura molecular del polipropileno.

De la misma manera, el tiempo necesario para la puesta en carga y funcionamiento inmediatamente después de la unión se reduce considerablemente en comparación con otros materiales.

Compatible con el medio ambiente

El material de Tuboplus Clima | Agua Helada es sostenible, ecológico y reciclable. La naturaleza de los materiales hace fácil la recuperación a un nivel cualitativo necesaria para la reutilización en la producción. Este proceso no requiere recursos energéticos y químicos, simplemente un proceso mecánico.

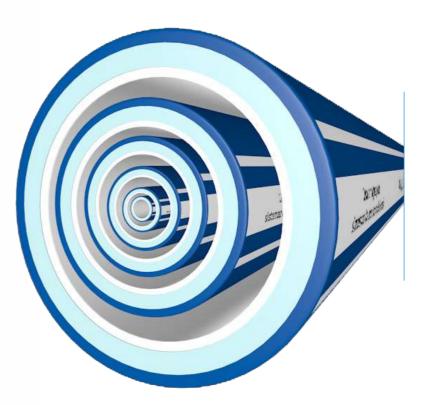

Todo consumo genera un residuo. Los residuos plásticos son un recurso valioso como para deshacerse de ellos sin aprovecharlos como fuente de materia (reciclado) o fuente de energía (valorización energética).

Una vez concluida su vida útil, las tuberías de polipropileno pueden ser recicladas de forma mecánica mediante un proceso granceado convirtiéndose en una nueva materia prima que a su vez, puede servir para la fabricación de otros productos, dando así al material una nueva vida útil.

Reacción al fuego B-s1. d0 y libre de halógenos

Tuboplus Clima | Agua Helada está libre de halógenos, característica de seguridad fundamental en caso de reacción al fuego, no produce gases tóxicos, por lo que no emana ninguna dioxina en el caso de incendio.

2.3. Características técnicas


Tubo Polipropileno PPR-CT RP + FV

Tubería Tuboplus Clima | Agua Helada, con clasificación al fuego B, s1-d0 y libre de halógenos, fabricada en PPR-CT RP multicapa, para agua fría, calefacción y climatización, resistente a los procesos de desinfección, aditivo antimicrobiano, protección anti-incrustaciones, microfibras anti-dilataciones y protección UV.

Serie ----, SDR ----, de diámetro exterior --- mm y espesor --- mm. Capa interna color blanco y capa externa color azul con banda blanca I/p.p. Codos, Tees y demás accesorios.

Características técnicas			
Propiedades	Valores	Unidades	Normas
Material	PPR CT RP + FV	=	-
Densidad	>0.93	g/cm³	ISO 1183
Índice de fluidez (230 °C/2.16 kg)	0.25	g/10'	ISO 1133
Esfuerzo hidrostático (20°C - 1h) a 15 Mpa	Sin fallo	-	ISO 1167
Esfuerzo hidrostático (95°C - 22h) a 4.2 Mpa	Sin fallo	-	ISO 1167
Esfuerzo hidrostático (95°C - 165h) a 4.0 Mpa	Sin fallo	=	ISO 1167
Esfuerzo hidrostático (20 °C - 1000h) a 3.8 Mpa	Sin fallo	=	ISO 1167
Estabilidad térmica (110 °C - 8760h) a 2.6 Mpa	Sin fallo	=	ISO 1167
Retracción longitudinal (135 °C)	<2	%	ISO 2505
Módulo de tensión	>950	Мра	ISO 527
Deformación en el punto de fluencia	>12	%	ISO 527
Esfuerzo en el punto de fluencia	>30	Мра	ISO 527
Dilatación térmica lineal	<0.04	mm/m °C	-
Coeficiente de conductividad térmica	0.24	W/m °C	DIN 52612
Opacidad	Sí	=	ISO 7686
Impacto caída de bola (resistencia a choques externos-método de la escalera)	H50≥1m (S3.2) H50≥0.7m (S4 -S5 - S6.3 - S8)	m	EN 1411
Rugosidad	0.003	mm	-

Tabla 1. Características técnicas.

Páginas | 12 · 13

2.4. Curvas de regresión

Determinación a largo plazo de la resistencia hidrostática.

ISO 9080:2003 - Evaluación de la tubería Tuboplus Clima | Agua Helada.

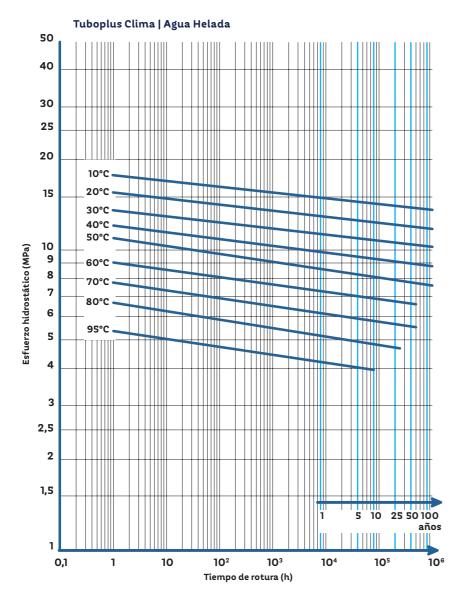


Tabla 2. Curvas de regresión.

Presión de trabajo que puede soportar la tubería para agua a presión.

Las presiones de trabajo máximas según la ecuación de resistencia a la presión interna de acuerdo con la Norma DIN 8078. teniendo en cuenta un factor de seguridad SF.

Donde:

p: presión de trabajo admisible σ: esfuerzo hidrostático en MPa S: serie de la tubería

SF: factor de seguridad

$$p = \frac{\sigma^{-}}{S \times SE} \times 10^{\circ}$$

2.5. Presiones de trabajo admisibles

Las tablas de Presión de Servicio Admisible representan los años de funcionamiento esperados en las tuberías bajo las condiciones de presión y temperatura, indicada en cada serie. Los datos resultantes no tienen en cuenta alteraciones de las que puedan ser objeto las instalaciones, como por ejemplo elevada concentración de agentes químicos y anomalías en cuanto al funcionamiento de control de presión y temperatura, etc.

Temp.	Años de servicio		Tuboplus Clima Agua Helada Serie 3.2-SDR 7.4		lima Agua Helada ie 5-SDR 11		lima Agua Helad ie 8-SDR 17
		Kg/cm²	psi	Kg/cm²	psi	Kg/cm²	psi
	1	39.20	568.52	25.08	363.75	15.68	227.42
	5	38.20	554.04	24.40	353.89	15.28	221.61
10 °C	10	37.57	544.90	24.04	348.67	15.03	217.99
	25	36.75	533.01	23.52	341.12	14.70	213.20
	50	36.50	529.38	23.36	338.80	14.60	211.75
	100	35.95	521.41	23.00	333.58	14.38	208.56
	1	34.15	495.30	21.85	316.90	13.66	198.12
	5	33.05	479.34	21.15	306.75	13.22	191.74
20.80	10	32.77	474.70	20.97	304.14	13.11	190.14
20 °C	25	32.00	464.12	20.48	297.03	12.80	185.64
	50	31.70	459.76	20.30	294.32	12.68	183.90
	100	31.15	451.79	19.93	289.06	12.46	180.71
	1	29.80	432.21	19.08	276.73	11.93	173.03
	5	29.00	420.60	18.56	269.19	11.60	168.24
00.00	10	28.45	412.63	18.20	263.96	11.38	165.05
30 °C	25	27.90	404.65	17.85	258.89	11.16	161.86
	50	27.62	400.59	17.68	256.42	11.05	160.26
	100	27.05	392.32	17.31	251.06	10.82	156.93
	1	26.05	377.82	16.67	241.77	10.42	151.12
	5	25.20	365.49	16.12	233.80	10.08	146.19
40 °C	10	24.65	357.51	15.77	228.72	9.86	143.00
	25	24.37	353.45	15.60	226.25	9.75	141.41
	50	23.82	345.47	15.24	221.03	9.53	138.22
	100	23.52	341.12	15.05	218.28	9.41	136.48
	1	23.05	334.31	14.75	213.93	9.22	133.72
	5	22.17	321.54	14.19	205.80	8.87	128.64
TO 00	10	21.60	313.28	13.82	200.44	8.64	125.31
50 °C	25	21.30	308.93	13.63	197.78	8.52	123.57
	50	20.75	300.95	13.20	191.44	8.30	120.38
	100	20.45	296.60	13.30	188.54	8.18	118.64
	1	19.37	280.93	12.40	179.84	7.75	112.40
	5	18.80	372.67	12.03	174.48	7.52	109.06
60 °C	10	18.50	268.31	11.84	171.72	7.40	107.32
	25	17.92	259.90	11.47	166.35	7.17	103.99
	50	17.70	256.71	11.30	163.89	7.06	102.39
	1	16.55	240.03	10.59	153.59	6.62	96.01
	5	15.67	227.27	10.00	145.03	6.27	90.93
70 °C	10	15.40	223.35	9.85	142.86	6.16	89.34
	25	15.10	219.00	9.66	140.10	6.04	87.60
	50	14.90	216.10	9.50	137.78	5.93	86.00
	1	13.82	200.44	8.84	128.21	5.53	80.20
00.00	5	13.22	191.73	8.46	122.70	5.29	76.72
80 °C	10	12.92	187.38	8.27	119.94	5.17	74.98
	25	12.70	184.19	8.10	117.48	5.06	73.38
0.0.4.5	1	10.75	155.91	6.88	99.78	4.30	62.36
95 °C	5	10.15	147.21	6.49	94.12	4.06	58.88

Tabla 3. Presiones de trabajo admisibles, de uso exclusivo en instalaciones de agua sanitaria.

2.6. Estudio de evolución de la carga microbiana y legionella

El presente estudio está realizado por AQM Laboratorios, empresa colaboradora con el Ministerio de Medio Ambiente y acreditada por ENAC (www.aqmlaboratorios.com)

Aditivo antimicrobiano

Las tuberías utilizadas para la distribución de agua potable no deben contaminar o empeorar la calidad del agua transportada con gérmenes o sustancias que puedan representar un peligro potencial para la salud del consumidor. Las tuberías metálicas utilizadas hoy en día en numerosos sistemas aportan elementos altamente contaminantes al agua como cobre, hierro, o plomo; elementos que facilitan la proliferación de agentes patógenos al favorecer la formación de biocapa en el interior de las paredes de la tubería.

En las tuberías PPR-CT RP no existe corrosión, por lo que no se produce ningún aporte de nutrientes ni formación de incrustaciones donde las bacterias puedan residir y multiplicarse; tampoco perjudican la calidad del agua potable que transportan.

La creciente preocupación por la calidad del agua en sistemas de distribución ha llevado a Rotoplas a introducir una mejora sustancial en las tuberías Tuboplus Clima | Agua Helada, que incorporan un novedoso aditivo antimicrobiano que actúa de manera eficaz contra la proliferación de bacterias y hongos en el interior de las paredes de las tuberías.

Estudio de evolución de la carga microbiana

La aditivación de tubos Tuboplus Clima | Agua Helada con agentes antimicrobianos, ha demostrado la práctica desaparición de los microorganismos que se desarrollan en el interior de las paredes de la tubería. Estas afirmaciones se derivan de los resultados obtenidos del "Estudio de evolución de carga microbiana" elaborado por AQM Laboratorios (entidad acreditada por ENAC) para Tuboplus para Aire acondicionado.

Transcurridas 24 horas desde la inoculación de diferentes microorganismos a 30 °C (punto de máximo crecimiento), el aditivo provoca la práctica desaparición de la mayor parte de los peligros potenciales para el agua potable, como son aerobios mesófilos y coliformes, tal y como muestran los gráficos, consiguiendo una reducción efectiva del 99 % de estos mircroorganismos en tan solo 24 horas de puesta en servicio de la red.

Prevención y control de la legionela

Una de las bacterias más peligrosas para el ser humano y que se desarrolla en las redes de distribución de agua potable es la legionella. Las condiciones óptimas para su crecimiento y multiplicación son una temperatura elevada (entre 20-40 °C), la presencia de nutrientes y un sustrato (biocapa) capaz de protegerla de los agentes bactericidas de desinfección. Las tuberías metálicas, debido a su proceso de corrosión, favorecen el desarrollo de estos nutrientes, lo que contribuye al desarrollo de la *Legionella*. Estas condiciones suelen darse principalmente en sistemas productores o acumulares de agua como torres de refrigeración, condensadores, sistemas de acumulación, sistemas de aire acondicionado, etc.

El novedoso aditivo antimicrobiano que incorporan estos sistemas consigue la reducción efectiva de microorganismos en tan solo 24 h de la puesta en servicio de la red.

Estudio de evolución de la legionela

La efectividad de los agentes antimicrobianos para prevenir la expansión de la legionela ha sido probada en el "Estudio de evolución de la legionela" realizado por AQM Laboratorios, en Tuboplus para Aire acondicionado. El ensayo ha demostrado que transcurridas 72 horas desde la inoculación de la bacteria en tubos tratados con y sin aditivo (siendo el máximo crecimiento de la cepa en este punto), el tubo con aditivo presenta un descenso del 56 % de la *Legionella pheumophila*.

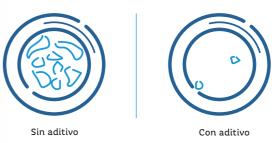


Figura 1. Proliferación de hongos en muestra con y sin aditivo.

2.6.1. Estudio de evolución de carga microbiana

Estudio de la evolución de diferentes microorganismos inoculados en tuberías tratadas con antimicrobianos específicos. Las muestras analizadas se corresponden a materiales fabricados en PPR-CT RP + FV en configuración tricapa, una de ellas sin la adición de agente antimicrobiano, en adelante TUBO SIN ADITIVOS; en otra, se ha añadido en su proceso de fabricación un agente antimicrobiano, en adelante TUBO CON ADITIVOS.

Procedimiento

Las tuberías se han inoculado con cuatro cepas de microorganismos diferentes suspendidas en 1 l de agua potable estéril.

Los microorganismos inoculados han sido los siguientes:

- · Escherichia coli.
- · Citrobacter freundii.
- · Psuedomonas aeruginosa.
- · Sacchararomyces cerevisiae.

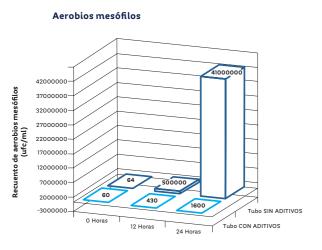
Posteriormente, las tuberías con los inóculos, se han incubado durante 24 horas a 30 °C de temperatura.

La carga microbiana de los inóculos se ha ido analizando en diferentes tiempos de incubación en cada una de las cuatro probetas iguales de cada una de las dos muestras a estudiar: inicialmente, a las 12 horas y a las 24 horas.

Los ensayos realizados han sido los siguientes:

- Recuento de microorganismos aerobios a 30 °C (PNT-M-AL-003).
- · Recuento de bacterias coliformes (PNT-M-AL-009).
- · Recuento de levaduras (PNT-M-AL-008).

Resultados


A continuación se muestran los resultados obtenidos para ambas muestras. El cuenteo de cada uno de los microorganismos se identifica por separado a cada tiempo de incubación, así como el logaritmo de ufc/ml, unidad habitual de medida del cultivo en microbiología.

Duckster	Tiempo	. (Levaduras (PNT-M-AL-009)	
Probetas	Incubación (horas)	ufc/ml	log ufc/ml	ufc/ml	log ufc/ml	ufc/ml	log ufc/ml
Tubo sin aditivos Concentración inicial							
Probeta 0	0	64	1.81	26	1.41	37	1.57
Probeta 1	12	500000	5.70	26	1.41	230000	5.36
Probeta 2	24	41000000	7.61	26	1.41	31000000	7.49
Tubo con aditivos Concentración inicial							
Probeta O	0	60	1.78	15	1.18	46	1.66
Probeta 1	12	430	2.63	18	1.26	200	2.3
Probeta 2	24	16000	4.20	20	1.30	6200	3.79

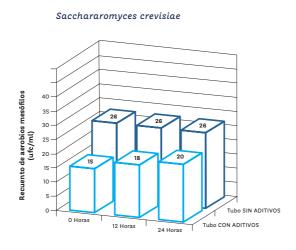
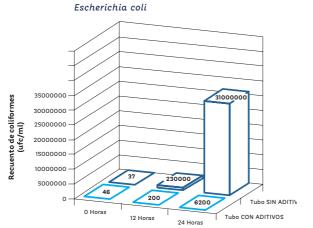

ufc/ml: unidad formadora de colonias por ml.

Tabla 4. Resultados.


En los siguientes gráficos se ilustran los descensos de cada uno de los microoganismos en las dos muestras analizadas para la concentración inicial inoculada y los análisis posteriores a 12 y 24 horas después de la inoculación.

Gráfica 1. Recuento en placa de microorganismos aerobios mesófilos a 30 °C (PNT-M-AL-003).

Gráfica 2. Recuento en placa de levaduras (PNT-M-AL-008).

Gráfica 3. Recuento en placa de bacterias coliformes (PNT-M-AL-009).

Conclusiones

Transcurridas 24 horas desde la inoculación de cada uno de los microorganismos, se pueden extraer las siguientes conclusiones:

- · Resultados de AEROBIOS MESÓFILOS TOTALES: El aditivo antimicrobiano ha provocado la desaparición de un 99.96 % del contenido de aerobios mesófilos en el TUBO CON ADITIVOS.
- · Resultados en LEVADURAS: El TUBO CON ADITIVOS presenta un descenso del 23.08 % en el contenido de levaduras comparado con el tubo sin ningún aditivo antimicrobiano.
- Resultados de COLIFORMES: La adición de agente antimicrobiano resulta en la muerte del 99.98 % de los coniformes presentes en el tubo SIN ADITIVOS.

En resumen, la aditivación de tubos de polipropileno Tuboplus Clima | Agua Helada con agentes antimicrobianos adecuados consigue prácticamente la desaparición total de los microorganismos inoculados y en crecimiento a 30 °C (de manera que por temperatura el crecimiento está viéndose favorecido). Aerobios mesófilos totales y coliformes representan la mayor parte de los peligros potenciales en su aparición en agua potable, como se ha visto en los recuentos su porcentaje disminuye por encima del 99 %.

2.6.2. Estudio de evolución de Legionella

Estudio de la evolución de *Legionella* pneumophila inoculada en tuberías tratadas con antimicrobianos específicos.

Las muestras de Tuboplus Clima | Agua Helada (PPR-CT RP+FV) se han clasificado en dos grupos, cada una de ellas presenta diferentes características en cuanto a la composición.

Tuberías SIN ADITIVOS antimicrobianos y Tuberías CON ADITIVOS antimicrobianos.

Procedimiento

Las tuberías se han inoculado con la cepa *Legionella* pneumophila suspendida en 1 litro de agua potable estéril. Posteriormente, las tuberías con los inóculos, se han incubado durante un total de 6 días (144 h) horas a 37 °C \pm 1 °C de temperatura.

La carga microbiana de los inóculos se ha ido analizado en diferentes tiempos de incubación: inicialmente y hasta las 96 horas de inoculación (4 días). La cepa *Legionella* presenta su máximo de crecimiento en 3 días, posteriormente se iría produciendo una muerte del inóculo si no se reestableciera el cultivo o la introducción de una nueva cepa.

Los ensayos realizados han sido los siguientes:

 \cdot Recuento de Legionella pneumophila a 37 °C (PNT-M-AQ-004).

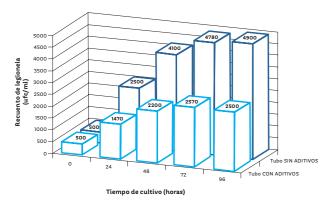

Probetas	Tiempo incubación (horas)	pneur	de Legionella nophila -AQ-004)
		ufc/ml	log (ufc/ml)
Tubo con aditivos Concentración inici	al		
Probeta O	0	500	2.70
Probeta 1	24	1470	3.17
Probeta 2	48	2200	3.34
Probeta 3	72	2570	3.41
Probeta 4	96	2500	3.40
Tubo sin aditivos Concentración inici	al		
Probeta O	0	500	2.70
Probeta 1	24	2500	3.40
Probeta 2	48	4100	3.61
Probeta 3	72	4780	3.68
Probeta 4	96	4900	3.69

Tabla 5. Resultados

Resultados

A continuación se muestran los resultados obtenidos para el material Tuboplus Clima | Agua Helada para las muestras con y sin agente bacteriostático en los diferentes tiempos de incubación.

Legionela pneumophila

Conclusiones

Transcurridas 96 horas (4 días) desde la inoculación de *Legionella* y siendo máximo el crecimiento de la cepa en este punto, la diferencia del tubo sin aditivo (tubo estándar) y el tubo con aditivo, es un descenso del 49 % en el tubo con agente antimicrobiano.

Gráfica 4. Recuento en placa de *Legionela pneumophila* (PNT-M-AQ-004).

3. Resistencia a la desinfección química y térmica

Instalaciones interiores de agua fría y caliente sanitaria

El diseño de los sistemas de agua caliente sanitaria y fría de consumo humano debe garantizar:

- a) Que no se produzcan estancamientos (para ello se deben abrir periódicamente todos los grifos y así facilitar la renovación del agua).
- b) Un adecuado aislamiento térmico.
- c) Una correcta circulación del agua.

Con respecto a los materiales de las instalaciones, estos deben ser resistentes a los métodos de desinfección establecidos (elevada concentración desinfectante o elevada temperatura). Los sistemas de tuberías Tuboplus para Aire Acondicionado soportan con éxito ambos métodos de desinfección.

Mantenimiento de las instalaciones interiores de ACS y agua fría de consumo humano

Las medidas de prevención irán encaminadas a evitar la proliferación de microorganismos dentro de las instalaciones interiores. Las medidas preventivas de mayor importancia son un buen diseño y mantenimiento de las instalaciones, junto con un control de la temperatura y una desinfección continua.

Es por ello necesario seguir las indicaciones de la revisión periódica de estas instalaciones según establece el Real Decreto 865/2003 en su Anexo 3.

Conforme a dicho Real Decreto, se establece que las instalaciones de agua fría y caliente sanitaria deberán limpiarse y desinfectarse al menos una vez al año, cuando se pongan en marcha por primera vez, tras una parada superior a 1 mes y tras una reparación o modificación estructural. La limpieza y desinfección será más rigurosa en caso de brote de legionelosis.

Importante

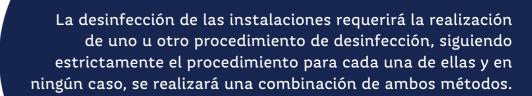
Tratamiento inadecuado. La ejecución del tratamiento de desinfección sin seguir correctamente los parámetros (concentración cloro, temperatura, tiempo) o bien, la elección de un tratamiento inadecuado, pueden provocar la degradación oxidativa de los distintos elementos del sistema.

Revisión de las instalaciones de agua caliente y fría

Una desinfección no será efectiva si no va acompañada de una limpieza exhaustiva. Se deben utilizar sistemas de tratamiento y productos aptos para el agua de consumo humano.

Los métodos de limpieza y desinfección contemplados son:

- a) Desinfección térmica.
- b) Desinfección química con cloro.


Desinfección térmica

La desinfección térmica consiste en elevar la temperatura de las redes a unos niveles según el tratamiento que se busque:

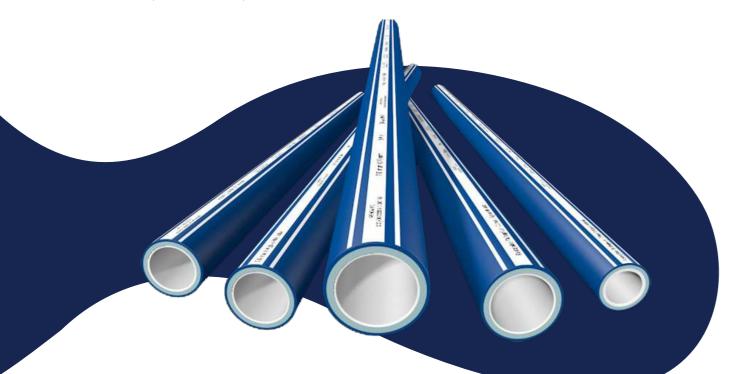
- Tratamiento de desinfección.
- En el caso de disponer de depósitos: vaciar el sistema, si son accesibles, limpiar a fondo las paredes de los depósitos de acumulación, en caso contrario, realizar una purga. Realizar las reparaciones necesarias en los mismos y aclararlos con agua limpia.
- · Llenar el depósito y elevar la temperatura del agua hasta 70 °C y mantener durante 2 horas.
- Posteriormente abrir por sectores todos los grifos y duchas, durante 5 minutos, de forma secuencial.
- Confirmar la temperatura para que en todos los puntos terminales de la red se alcance una temperatura de 60 °C.
- · Vaciar los depósitos de acumulación y volver a llenarlos, restableciendo de este modo, su funcionamiento habitual.

Tratamiento en caso de brote de legionelosis

- En el caso de disponer de depósitos: Vaciar el sistema, limpiar a fondo las paredes de los depósitos y los acumuladores, realizar las reparaciones necesarias y aclarar con agua limpia.
- Llenar el depósito acumulador y elevar la temperatura del agua hasta 70 °C o más durante al menos 4 horas. Posteriormente, abrir todos los grifos y duchas durante 10 minutos de forma secuencial. Comprobar la temperatura para que en todos los puntos terminales de la red se alcancen 60 °C. Vaciar los depósitos de acumulación y volver a llenarlos.
- Se deberá proceder al tratamiento continuado del agua durante 3 meses de forma que, en los puntos terminales de la red, se detecte de 1-2 mg/l de cloro libre residual para agua fría y que la temperatura de servicio en dichos puntos para el agua caliente se sitúe entre 55 y 60 °C.

Desinfección con cloro

La capacidad de destruir patógenos con bastante rapidez del cloro y sus compuestos así como su fácil disponibilidad los hacen muy adecuados para la desinfección química.


El empleo del cloro, como desinfectante de estas instalaciones, está muy extendido por ser un producto eficaz, de fácil medición y económico, no debemos olvidar que su utilización presenta dos importantes inconvenientes: su elevado poder oxidante, que puede dar lugar a efectos corrosivos en las instalaciones y que precisa controlar que el pH se encuentre por debajo de 8. límite por encima del cual su acción bactericida es muy reducida.

Tratamiento químico para desinfección con cloro

- · En el caso de existencia de depósito, clorar el agua del mismo con 20-30 mg/l de cloro residual libre, manteniendo el agua por debajo de 30 °C y con un pH de 7-8. haciendo llegar a todos los puntos terminales de la red 1-2 mg/l de cloro. Se mantendrá un periodo de 3-2 horas respectivamente.
- · Si no existen depósitos, se entiende que debe clorarse el sistema para llegar a 1-2 mg/l en puntos de consumo no existiendo obligación de alcanzar 20-30 mg/l.
- · Como alternativa, se puede clorar el depósito con 4-5 mg/l, manteniendo estos niveles durante 12 horas.
- · Neutralizar la cantidad de cloro residual libre y vaciar el agua del sistema.
- · En sistemas con depósitos acumuladores, limpiar a fondo las paredes, si estos no son accesibles, realizar una purga. Realizar las reparaciones necesarias en los mismos y aclararlos con agua limpia.
- · Volver a llenar con agua y restablecer las condiciones de uso normales. Si es necesaria la recloración, ésta se realizará por medio de dosificadores automáticos.

Tratamiento en caso de brote de legionelosis

- · Clorar con 15 mg/l de cloro residual libre, manteniendo el agua por debajo de 30 °C y a un pH de 7-8. Se mantendrá durante un periodo de 4 horas.
- · Como alternativa, se puede clorar el sistema con 20 o 30 mg/l de cloro residual libre, manteniendo estos niveles durante 3 o 2 horas respectivamente.
- · Neutralizar la cantidad de cloro libre residual y vaciar el agua del sistema. Limpiar a fondo las paredes de los depósitos, realizar las reparaciones necesarias en los mismos y aclararlos y llenar con agua limpia.
- Reclorar con 4-5 mg/l de cloro libre residual y mantener durante 12 horas. Esta cloración debería realizarse secuencialmente, distribuyendo el desinfectante de manera ordenada desde el principio hasta el final de la red. Abrir por sectores todos los grifos y duchas, durante 5 minutos, de forma secuencial comprobar en los puntos terminales que la concentración en estos puntos sea 1-2 mg/l.
- · Vaciar los tanques de acumulación y volver a llenarlos.
- · Es necesario renovar todos aquellos elementos de la red en los que se observe alguna anomalía, en especial aquellos afectados por la corrosión o la incrustación.

4. Dimensionado de las redes de distribución

4.1. Calidad del agua

El agua de la instalación debe cumplir lo establecido en la legislación vigente sobre el agua para consumo humano.

- · No deben modificar la potabilidad, el olor, el color ni el sabor del agua.
- · Deben ser resistentes a la corrosión interior.
- · Deben ser capaces de funcionar eficazmente en las condiciones de servicio previstas.
- · No deben presentar incompatibilidad electroquímica entre sí.
- · Deben ser compatibles con el agua suministrada y no deben favorecer la migración de sustancias de los
- materiales en cantidades que sean un riesgo para la salubridad y limpieza del agua de consumo humano.
- · Su envejecimiento, fatiga, durabilidad y las restantes características mecánicas, físicas o químicas, no deben disminuir la vida útil prevista de la instalación.

Para cumplir las condiciones anteriores pueden utilizarse revestimientos, sistemas de protección o sistemas de tratamiento de agua.

La instalación de suministro de agua debe tener características adecuadas para evitar el desarrollo de gérmenes patógenos y no favorecer el desarrollo de la biocapa (biofilm).

Protección contra retornos

Se dispondrán sistemas antirretorno para evitar la inversión del sentido del flujo en los puntos que figuran a continuación, así como en cualquier otro que resulte necesario:

- Después de los contadores.
- · En la base de las ascendentes.
- · Antes del equipo de tratamiento de agua.
- · En los tubos de alimentación no destinados a usos domésticos.
- · Antes de los aparatos de refrigeración o climatización.

Las instalaciones de suministro de agua no podrán conectarse directamente a instalaciones de evacuación ni a instalaciones de suministro de agua proveniente de otro origen que la red pública.

En los aparatos y equipos de la instalación la llegada de agua se realizará de tal modo que no se produzcan retornos.

Los antirretornos se dispondrán combinados con grifos de vaciado de tal forma que siempre sea posible vaciar cualquier tramo de la red.

4.2. Condiciones mínimas de suministro

Separaciones respecto de otras instalaciones

El tenido de las tuberías de agua fría debe hacerse de tal modo que no resulten afectadas por los focos de calor y por consiguiente deben discurrir siempre separadas de las canalizaciones de agua caliente (ACS o calefacción) a una distancia de 4 cm, como mínimo. Cuando las dos tuberías estén en un mismo plano vertical, la de agua fría debe ir siempre por debajo de la de agua caliente.

Las tuberías deben ir por debajo de cualquier canalización o elemento que contenga dispositivos eléctricos o electrónicos, así como de cualquier red de telecomunicaciones, guardando una distancia en paralelo de al menos 30 cm.

Con respecto a las conducciones de gas se guardará al menos una distancia de 3 cm.

Páginas | 22 · 23

Dimensionado de las redes de distribución

El cálculo se realizará con un primer dimensionado seleccionando el tramo más desfavorable de la misma y obteniéndose unos diámetros previos que posteriormente habrá que comprobar en función de la pérdida de carga que se obtenga con los mismos.

Este dimensionado se hará siempre teniendo en cuenta las peculiaridades de cada instalación y los diámetros obtenidos serán los mínimos que hagan compatibles el buen funcionamiento y la economía de la misma.

Dimensionado de los tramos

El dimensionado de la red se hará a partir del dimensionado de cada tramo, y para ello se partirá del circuito considerado como más desfavorable que será aquel que cuente con la mayor pérdida de presión debida tanto al rozamiento como a su altura geométrica.

El dimensionado de los tramos se hará de acuerdo al procedimiento siguiente:

- · El caudal máximo de cada tramo será igual a la suma de los caudales de los puntos de consumo alimentados por el mismo de acuerdo con la tabla de caudal instantáneo.
- · Establecimiento de los coeficientes de simultaneidad de cada tramo de acuerdo con un criterio adecuado.
- · Determinación del caudal de cálculo en cada tramo como producto del caudal máximo por el coeficiente de simultaneidad correspondiente.
- · Elección de una velocidad de cálculo comprendida dentro de los intervalos siguientes:
- Tuberías metálicas: entre 0.50 y 2.00 m/s.
- Tuberías termoplásticas y multicapas: entre 0.50 y 3.50 m/s.
- . Obtención del diámetro correspondiente a cada tramo en función del caudal y de la velocidad.

Comprobación de la presión

Se comprobará que la presión disponible en el punto de consumo más desfavorable supera con los valores mínimos indicados y que en todos los puntos de consumo no se supera el valor máximo de acuerdo con lo siguiente:

- · Determinar la pérdida de presión del circuito sumando las pérdidas de presión total de cada tramo. Las pérdidas de carga localizadas podrán estimarse en un 20 % al 30 % de la producida sobre la longitud real del tramo o evaluarse a partir de los elementos de la instalación.
- · Comprobar la suficiencia de la presión disponible: una vez obtenidos los valores de las pérdidas de presión del circuito, se comprueba si son sensiblemente iguales a la presión disponible que queda después de descontar a la presión total, la altura geométrica y la residual del punto de consumo más desfavorable. En el caso de que la presión disponible en el punto de consumo fuera inferior a la presión mínima exigida sería necesaria la instalación de un grupo de presión.

Dimensionado de las redes de retorno de ACS

Para determinar el caudal que circulará por el circuito de retorno se estimará que, en el grifo más alejado la pérdida de temperatura sea como máximo de 3 °C desde la salida del acumulador o intercambiador en su caso.

En cualquier caso no se recircularán menos de 250 l/h en cada columna, si la instalación responde a este esquema, para poder efectuar un adecuado equilibrado hidráulico.

El caudal de retorno se podrá estimar según reglas empíricas de la siguiente forma:

· Considerar que se recircula el 10 % del agua de alimentación, como mínimo.

Relación entre el diámetro de las tuberías v el recirculado de A.C.S.

y critemental de Areio.					
Diámetro de la tubería Tuboplus Clima Agua Helada (mm)	Caudal recirculado (l/h)				
20	140				
25	300				
32	600				
40	1.100				
50	1.800				
63	3.300				

Tabla 6.

4.3. Caudal de cálculo. Norma DIN 1988

Fórmulas y tabla

Una buena solución para la determinación del caudal de cálculo en una instalación de fontanería, teniendo en cuenta la simultaneidad, nos la proporciona la Norma DIN 1988-T2 (Códigos de práctica para instalaciones de agua potable).

Caudal de cálculo o de simultaneidad

Q = caudal total instalado. Qc = caudal de cálculo (simultáneo).

Qmin = caudal instantáneo mínimo.

Edificios						
		Q>20	O		l/s	
			Qmin < 0.5		Algún Q>1	
Vivienda		1.70 x (Q) ^{0.21} - 0.70				
Oficinas estaciones aeropuertos		0.40 x (Q) ^{0.54} + 0.48	0.682 x (Q) ^{0.45} - 0.14		1.70 x (Q) ^{0.21} - 0.70	
Hoteles discotecas museos		1.08 x (Q) ^{0.50} - 1.83	0.698 x (Q) ^{0.50} - 0.12	Q	(Q) ^{0.366}	Qc (l/s)
Hospitales		0.25 x (Q) ^{0.65} + 1.25				
Centros come	rciales	4.3 x (Q) ^{0.27} - 6.65				
Escuelas polideportivos	3	-22.5 x (Q) ^{-0.50} + 11.5			4.4 x (Q) ^{0.27} - 3.41	

Para otras construcciones especiales (cuarteles, cárceles, seminarios, industrias) hay que establecer consideraciones especiales sobre la simultaneidad.

Tabla 7.

Páginas | 24 · 25

Rotoplas

Caudal total instalado, Q

Es la suma de los caudales instantáneos mínimos de todos los aparatos instalados.

Caudal de cálculo o caudal simultáneo, Qc

Caudal que se produce por el funcionamiento lógico simultáneo de aparatos de consumo o unidades de suministro.

Caudal instantáneo mínimo, Qmin

Caudal instantáneo que se debe de suministrar a cada uno de los aparatos sanitarios con independencia del estado de funcionamiento.

ď	Qmin	Viviendas	Oficinas	Hoteles	Hospitales	Centros comerciales	Polideportivos
1.0	>0.5	0.54	0.54	0.58	0.58	0.58	0.99
1.0	>=0.5	1.00	1.00	1.00	1.00	1.00	0.99
	>0.5	0.79	0.79	0.87	0.87	0.87	1.90
2.0	>=0.5	1.27	1.27	1.29	1.29	1.29	1.90
2.0	>0.5	0.98	0.98	1.09	1.09	1.09	2.51
3.0	>=0.5	1.44	1.44	1.49	1.49	1.49	2.51
4.0	>0.5	1.13	1.13	1.28	1.28	1.28	2.99
4.0	>=0.5	1.57	1.57	1.66	1.66	1.66	2.99
5.0	>0.5	1.27	1.27	1.44	1.44	1.44	3.38
3.0	>=0.5	1.68	1.68	1.80	1.80	1.80	3.38
6.0	>0.5	1.37	1.37	1.59	1.59	1.59	3.73
0.0	>=0.5	1.78	1.78	1.93	1.93	1.93	3.73
7.0	>0.5	1.50	1.50	1.73	1.73	1.73	4.03
7.0	>=0.5	1.86	1.86	2.04	2.04	2.04	4.03
8.0	>0.5	1.60	1.60	1.85	1.85	1.85	4.30
6.0	>=0.5	1.93	1.93	2.14	2.14	2.14	4.30
9.0	>0.5	1.69	1.69	1.97	1.97	1.97	4.55
9.0	>=0.5	2.00	2.00	2.23	2.23	2.23	4.55
10.0	>0.5	1.78	1.78	2.09	2.09	2.09	4.78
10.0	>=0.5	2.06	2.06	2.32	2.32	2.32	4.78
11.0	>0.5	1.87	1.87	2.20	2.20	2.20	5.00
	>=0.5	2.11	2.11	2.41	2.41	2.41	5.00
12.0	>0.5	1.95	1.95	2.30	2.30	2.30	5.20
12.0	>=0.5	2.16	2.16	2.48	2.48	2.48	5.20
13.0	>0.5	2.02	2.02	2.40	2.40	2.40	5.38
15.0	>=0.5	2.21	2.21	2.56	2.56	2.56	5.38
14.0	>0.5	2.10	2.10	2.49	2.49	2.49	5.56
	>=0.5	2.26	2.26	2.63	2.63	2.63	5.56
15.0	>0.5	2.17	2.17	2.58	2.58	2.58	5.73
15.0	>=0.5	2.30	2.30	2.69	2.69	2.69	5.73
16.0	>0.5	2.23	2.23	2.67	2.67	2.67	5.89
	>=0.5	2.34	2.34	2.76	2.76	2.76	5.89
17.0	>0.5	2.30	2.30	2.76	2.76	2.76	6.05
	>=0.5	2.38	2.38	2.82	2.82	2.82	6.05
18.0	>0.5	2.36	2.36	2.84	2.84	2.84	6.19
	>=0.5	2.42	2.42	2.88	2.88	2.88	6.19
19.0	>0.5	2.43	2.43	2.92	2.92	2.92	6.33
	>=0.5	2.45	2.45	2.94	2.94	2.94	6.33
20.0	>0.5	2.49	2.49	3.00	3.00	3.00	6.47
_3.0	>=0.5	2.49	2.49	2.99	2.99	2.99	6.47

ď	Viviendas	Oficinas	Hoteles	Hospitales	Centros comerciales	Polideportivos
21.0	2.52	2.55	3.12	3.06	3.13	6.59
22.0	2.55	2.60	3.24	3.11	3.26	6.70
23.0	2.58	2.65	3.35	3.17	3.38	6.81
24.0	2.61	2.71	3.46	3.22	3.49	6.91
25.0	2.64	2.75	3.57	3.28	3.60	7.00
26.0	2.67	2.80	3.68	3.33	3.71	7.09
27.0	2.70	2.85	3.78	3.38	3.82	7.17
28.0	2.72	2.90	3.88	3.43	3.92	7.25
29.0	2.75	2.94	3.99	3.48	4.02	7.32
30.0	2.77	2.99	4.09	3.53	4.12	7.39
31.0	2.80	3.04	4.18	3.58	4.22	7.46
32.0	2.82	3.08	4.28	3.63	4.31	7.52
33.0	2.84	3.12	4.37	3.68	4.40	7.58
34.0	2.86	3.17	4.47	3.72	4.49	7.64
35.0	2.89	3.21	4.56	3.77	4.58	7.70
36.0	2.91	3.25	4.65	3.82	4.67	7.75
37.0	2.93	3.29	4.74	3.86	4.75	7.80
38.0	2.95	3.33	4.83	3.91	4.83	7.85
39.0	2.97	3.37	4.91	3.95	4.91	7.90
40.0	2.99	3.41	5.00	4.00	4.99	7.94
41.0	3.01	3.45	5.09	4.04	5.07	7.99
42.0	3.03	3.49	5.17	4.09	5.15	8.03
43.0	3.05	3.53	5.25	4.13	5.22	8.07
44.0	3.06	3.57	5.33	4.18	5.30	8.11
45.0	3.08	3.60	5.41	4.22	5.37	8.15
46.0	3.10	3.64	5.49	4.26	5.44	8.18
47.0	3.12	3.68	5.57	4.30	5.51	8.22
48.0	3.13	3.72	5.65	4.35	5.58	8.25
49.0	3.15	3.75	5.73	4.39	5.65	8.29
50.0	3.17	3.79	5.81	4.43	5.71	8.32
51.0	3.18	3.82	5.88	4.47	5.78	8.35
52.0	3.20	3.86	5.96	4.51	5.85	8.38
53.0	3.21	3.89	6.03	4.55	5.91	8.41
54.0	3.23	3.93	6.11	4.59	5.97	8.44
55.0	3.24	3.96	6.18	4.63	6.04	8.47
56.0	3.26	4.00	6.25	4.67	6.10	8.49
57.0	3.27	4.03	6.32	4.71	6.16	8.52
58.0	3.29	4.06	6.40	4.75	6.22	8.55
59.0	3.30	4.10	6.47	4.79	6.28	8.57
20.0	0.00	4.10	0.04	4.00	0.04	0.00

4.4. Equivalencia de diámetros

4.4.1. Equivalencia de diámetros de tubos de cobre Tuboplus Clima | Agua Helada

Equivalencia rápida Tuboplus Clima | Agua Tubo de Cu Helada Diámetro (mm) Diámetro 12 15 20 18 22 25 28 32 35 40 42 50

Tabla 9.

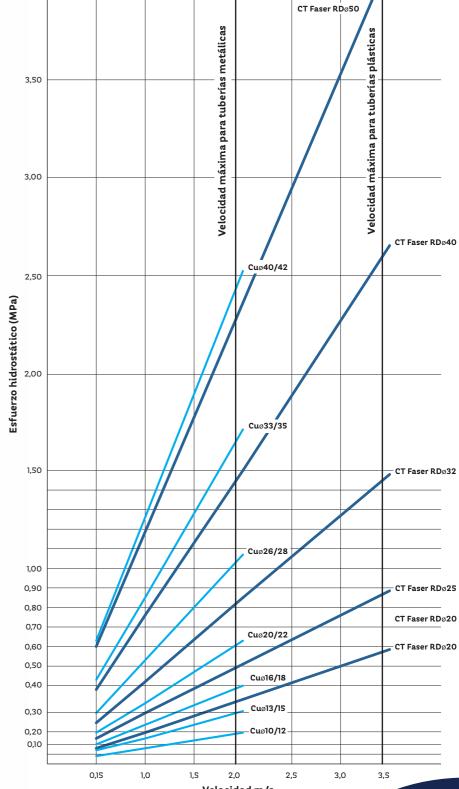
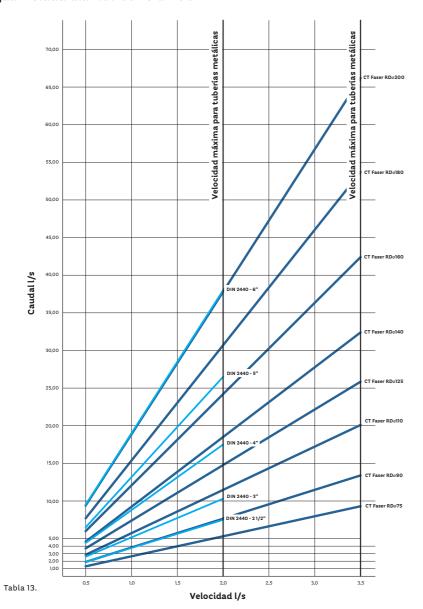


Tabla 10.

Velocidad m/s

Tabla 8.

4.4.2. Equivalencia de diámetros de tubos de acero Tuboplus Clima | Agua Helada diámetros 20 a 63



Tubo de Acero DIN 2440 Diámetro (")	Tuboplus Clima Agua Helada Diámetro (mm)
3/8"	20*
1/2"	20
3/4"	25
1"	32
1 1/4"	40
1 1/2"	50
2"	63
2 1/2"	75
3"	90
4"	110
5″	140
6"	160

*Sobre pedido.

Tabla 12.

4.4.3. Equivalencia de diámetros de tubos de acero Tuboplus Clima | Agua Helada diámetros 75 a 200

4.5. Aislamiento térmico

El espesor del aislamiento de las conducciones, tanto en la ida como en el retorno, se dimensionará de acuerdo a lo indicado las condiciones en las que han de aislarse las redes de tuberías en las instalaciones de agua fría y caliente.

Todas las tuberías y accesorios, así como equipos, aparatos y depósitos de las instalaciones térmicas dispondrán de un aislamiento térmico cuando contengan:

- Fluidos refrigerados con temperatura menor que la temperatura ambiente del local por el que discurran.
- Fluidos con temperatura mayor que 40 °C cuando estén instalados en locales no calefactados.

Espesores mínimos de aislamiento (mm) de circuitos frigoríficos para climatización* en función del recorrido de las tuberías

Diámetro exterior (mm)	Interior edificios (mm)	Exterior edificios (mm)
D≤ 13	1	15
13 <d<16< td=""><td>15</td><td>20</td></d<16<>	15	20
26 <d<35< td=""><td>20</td><td>25</td></d<35<>	20	25
35 <d<90< td=""><td>30</td><td>40</td></d<90<>	30	40
D<90	40	50

*Excluidos los procesos de frío industrial Si el recorrido exterior de la tubería es superior a 25 m, se deberá aumentar estos espesores al espesor comercial inmediatamente superior con un aumento en ningún caso inferior a 5 mm

Tabla 14.

Procedimiento simplificado IT 1.2.4.2.1.2

El procedimiento simplificado establece los espesores mínimos de aislamiento térmico, en mm, para un material de aislamiento de referencia a 10 °C de 0.040 W/(m.K) deben ser los indicados en las siguientes tablas:

Fluidos CAL	IENTES en el I	NTERIOR de la	os edificios
Diámetro exterior	Temperat	ura máxima do	el fluido °C
(mm)	4060	>60100	>100180
D≤ 35	25	25	30
35 <d 60<="" td="" ≤=""><td>30</td><td>30</td><td>40</td></d>	30	30	40
60 <d 90<="" td="" ≤=""><td>30</td><td>30</td><td>40</td></d>	30	30	40
90 <d 140<="" td="" ≤=""><td>30</td><td>40</td><td>50</td></d>	30	40	50
140 <d< td=""><td>35</td><td>40</td><td>50</td></d<>	35	40	50

Fluidos CAL	IENTES en el I	NTERIOR de la	os edificios								
Diámetro exterior	Temperati	Temperatura máxima del fluido °C									
(mm)	4060	>60100	>100180								
D≤ 35	35	35	40								
35 <d 60<="" td="" ≤=""><td>40</td><td>40</td><td>50</td></d>	40	40	50								
60 <d 90<="" th="" ≤=""><th>40</th><th>40</th><th>50</th></d>	40	40	50								
90 <d 140<="" th="" ≤=""><th>40</th><th>50</th><th>60</th></d>	40	50	60								
140 <d< th=""><th>45</th><th>50</th><th>60</th></d<>	45	50	60								

Fluidos F	RIOS en el INT	ERIOR de los e	edificios							
Diámetro exterior	Temperatura máxima del fluido °C									
(mm)	>-1060	>010	>10							
D≤ 35	30	25	20							
35 <d 60<="" td="" ≤=""><td>40</td><td>30</td><td>20</td></d>	40	30	20							
60 <d 90<="" td="" ≤=""><td>40</td><td>30</td><td>30</td></d>	40	30	30							
90 <d 140<="" td="" ≤=""><td>50</td><td>40</td><td>30</td></d>	50	40	30							
140 <d< td=""><td>50</td><td>40</td><td>30</td></d<>	50	40	30							

Tablas 15. Son de carácter informativo, extraídas directamente del Reglamento de Instalaciones Térmicas (RITE).

Fluidos FRÍOS en el INTERIOR de los edificios

Diámetro exterior	Temperatura máxima del fluido °C										
(mm)	>-1060	>010	>10								
D≤ 35	50	45	40								
35 <d 60<="" td="" ≤=""><td>60</td><td>50</td><td>40</td></d>	60	50	40								
60 <d 90<="" td="" ≤=""><td>60</td><td>50</td><td>50</td></d>	60	50	50								
90 <d 140<="" td="" ≤=""><td>70</td><td>60</td><td>50</td></d>	70	60	50								
140 <d< td=""><td>70</td><td>60</td><td>50</td></d<>	70	60	50								

5. Pérdida de carga

5.1. Introducción

	Caudal	Diámetro exterior (mm)	20	25	32
	(l/s)	Espesor (mm)	2.8	3.5	4.4
		Diámetro interior (mm)	14.4	18.0	23.2
	0.32	Perdida de carga"R"(mbar/m)	32.86	11.21	3.33
		Velocidad "V" (m/sg)	1.96	1.26	0.76
	0.34	R	36.62	12.48	3.70
		V	2.09	1.34	0.80
	- 0.36	R	40.56	13.80	4.09
		V	2.21	1.41	0.85
	0.38	R	44.69	15.19	4.50
		V	2.33	1.49	0.90
	0.40	R	49.00	16.64	4.92
		V	2.46	1.57	0.95
30 1	0.45	R	60.59	20.51	6.05
Paso 1		V	2.76	1.77	1.06
	0.50	R	73.32	24.76	7.28
		V	3.07	1.96	1.18
	0.55	R	87.19	29.38	8.62
		V	3.38	2.16	1.30
	0.60	R	102.18	34.35	10.06
4		V	3.68	2.36	1.42
(0.65	Paso 2		39.69	11.60
		V		2.55	1.54
	0.70	R		45.38	13.24
		V		2.75	1.66
	0.75	R		51.43	14.98
		V		2.95	1.77
	0.80	R		57.84	16.81
		V		3.14	1.89
	0.85	R		64.60	18.75
		V		3.34	2.01
	0.90	R		71.71	20.78
		V		3.54	2.13
	0.95	R			22.19
		V			2.25
	1.00	R			25.13
		V			2.37
	1.10	R			29.86
		V			2.60
	1.20	R			34.98
		V			2.84
	1.30	R			40.47
		V			3.08
	1.40	R			46.34
		V			3.31
	1.50	R			52.58
		V			3.55

Diámetro	Serie 3.2	Serie 5
	SDR 7.4	SDR 11
20	0.163	-
25	0.254	-
32	0.423	-
40	-	0.835
50	-	1.307
63	-	2.075
75	-	2.961
90	-	4.254
110	-	6.362
125	-	8.203
160	-	13.436
200	-	21.021
250	-	32.878
315	-	52.198
400	-	84.187
500	-	-

Tabla 17.

V
Tabla 16. Ejemplo para la selección del

diámetro de una tubería.

5.2. Pérdidas de carga unitarias de las tubería

5.2.1 Pérdidas de carga unitarias de las tubería serie 3.2/sdr 7.4

Caudal	Diámetro exterior (mm)	20	25	32
(l/s)	Espesor (mm)	2.8	3.5	4.4
	Diámetro interior (mm)	14.4	18	23.2
0.01	Pérdida de carga "R"	0.10		
	(mbar/m) Velocidad "V" (m/sg)	0.6		
0.02	R	0.30	0.11	
	V	0.12	0.08	
0.03	R	0.58	0.21	
	V	0.18	0.12	
0.04	R	0.93	0.33	0.10
	V	0.25	0.16	0.09
0.05	R	1.34	0.47	0.15
	V	0.31	0.20	0.12
0.06	R	1.82	0.64	0.20
0.00	V	0.37	0.24	0.14
0.07	R	2.36	0.83	0.25
0.07	V	0.43	0.28	0.17
0.08	R	2.95	1.04	0.32
0.00	V	0.49	0.31	0.19
0.09	R	3.61	1.26	0.38
0.03	V	0.55	0.35	0.21
0.10	R	4.32	1.51	0.46
0.10	V			
0.11		0.61	0.39	0.24
0.11	R	5.08	1.77	0.54
0.10	V	0.68	0.43	0.26
0.12	R	5.90	2.05	0.62
0.10	V	0.74	0.47	0.28
0.13	R	6.77	2.35	0.71
0.14	V	0.80	0.51	0.31
0.14	R	7.70	2.67	0.81
0.10	V	0.86	0.55	0.33
0.15	R	8.67	3.00	0.91
0.10	V	0.92	0.59	0.35
0.16	R	9.70	3.36	1.01
0.15	V	0.98	0.63	0.38
0.17	R	10.78	3.73	1.12
	V	1.04	0.67	0.4
0.18	R	11.91	4.11	1.24
	V	1.11	0.71	0.43
0.19	R	13.09	4.51	1.36
	V	1.17	0.75	0.45
0.20	R	14.32	4.93	1.48
	V	1.23	0.79	0.47
0.22	R	16.93	5.82	1.74
	V	1.35	0.86	0.52
0.24	R	19.73	6.77	2.02
	V	1.47	0.94	0.57
0.26	R	22.73	7.79	2.32
	V	1.60	1.02	0.62
0.28	R	25.92	8.87	2.64
	V	1.72	1.10	0.66
0.30	R	29.29	10.01	2.98
	V	1.84	1.18	0.71

Caudal	Diámetro exterior (mm)	20	25	32
(l/s)	Espesor (mm)	2.8	3.5	4.4
	Diámetro interior (mm)	14.4	18.0	23.2
0.32	Pérdida de carga "R" (mbar/m)	32.86	11.21	3.33
	Velocidad "V" (m/sg)	1.96	1.26	0.76
0.34	R	36.62	12.48	3.70
	V	2.09	1.34	0.80
0.36	R	40.56	13.80	4.09
	V	2.21	1.41	0.85
0.38	R	44.69	15.19	4.50
	V	2.33	1.49	0.90
0.40	R	49.00	16.64	4.92
	V	2.46	1.57	0.95
0.45	R	60.59	20.51	6.05
	V	2.76	1.77	1.06
0.50	R	73.32	24.76	7.28
	V	3.07	1.96	1.18
0.55	R	87.19	29.38	8.62
	V	3.38	2.16	1.30
0.60	R	102.18	34.35	10.06
	V	3.68	2.36	1.42
0.65	R		39.69	11.60
	V		2.55	1.54
0.70	R		45.38	13.24
	V		2.75	1.66
0.75	R		51.43	14.98
	V		2.95	1.77
0.80	R		57.84	16.81
	V		3.14	1.89
0.85	R		64.60	18.75
	V		3.34	2.01
0.90	R		71.71	20.78
0.05	V		3.54	2.13
0.95	R			22.19
1.00	V			2.25
1.00	R			25.13
	V			2.37
1.10	R			29.86
1.00	V			2.60
1.20	R			34.98
1.00	V			2.84
1.30	R			40.47
1.40	V			3.08
1.40	R			46.34
1.00	V			3.31
1.50	R			52.58
	V			3.55

Conducción

5.2.2. Pérdidas de carga unitaria de la tubería serie 5/SDR 11

Caudal	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
(l/s)	Espesor (mm)	3.7	4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
	Diámetro interior (mm)	32.6	40.8	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	327.4
0.10	Pérdida de carga "R" (mbar/m)	0.09											
	Velocidad "V" (m/sg)	0.12											
0.20	R	0.30	0.10										
	V	0.24	0.15										
0.30	R	0.59	0.21										
	V	0.36	0.23										
0.40	R	0.97	0.34										
	V	0.48	0.31										
0.50	R	1.43	0.49										
	V	0.60	0.38										
0.60	R	1.97	0.68	0.23									
0.00	V	0.72	0.46	0.29									
0.70	R	2.58	0.88	0.30									
0.70	V	0.84	0.54	0.34									
0.00													
0.80	R	3.27	1.12	0.37									
	V	0.96	0.61	0.39									
0.90	R	4.02	1.37	0.46	0.20								
	V	1.08	0.69	0.43	0.30								
1.00	R	4.85	1.65	0.55	0.24								
	V	1.20	0.76	0.48	0.34								
1.10	R	5.74	1.95	0.65	0.28								
	V	1.32	0.84	0.53	0.37								
1.20	R	6.71	2.28	0.76	0.32								
	V	1.44	0.92	0.58	0.41								
1.30	R	7.75	2.63	0.87	0.37	0.16							
	V	1.56	0.99	0.63	0.44	0.31							
1.40	R	8.84	3.00	0.99	0.42	0.18							
	V	1.68	1.07	0.67	0.47	0.33							
1.50	R	10.01	3.39	1.12	0.48	0.2							
	V	1.80	1.15	0.72	0.51	0.35							
1.60	R	11.24	3.80	1.25	0.54	0.23							
	V	1.92	1.22	0.77	0.54	0.38							
1.70	R	12.54	4.23	1.39	0.60	0.25							
	V	2.04	1.30	0.82	0.57	0.4							
1.80	R	13.91	4.69	1.54	0.66	0.28							
	V	2.16	1.38	0.87	0.61	0.42							
1.90	R	15.34	5.17	1.70	0.72	0.30	0.12						
	V	2.28	1.45	0.92	0.64	1.45	0.30						
2.00	R	16.84	5.67	1.86	0.79	0.33	0.13						
2.00	V	2.40	1.35	0.96	0.68	0.47	0.31						
2.20	R	20.02	6.72	2.20	0.94	0.39	0.15						
2.20	V	2.64	1.68	1.06	0.74	0.52	0.35						
2.40	R	23.47	7.87	2.58	1.10	0.32	0.33						
2,40	V	2.88		1.16	0.81	0.56	0.38						
2.60			1.84					0 11					
2.60	R	27.17	9.09	2.97	1.26	0.53	0.20	0.11					
0.00	V	3.11	1.99	1.25	0.88	0.61	0.41	0.32					
2.80	R	31.13	10.40	3.39	1.44	0.60	0.23	0.13					
	V	3.35	2.14	1.35	0.95	0.66	0.44	0.34					
3.00	R	35.34	11.79	3.84	1.63	0.68	0.26	0.14					
	V	3.59	2.29	1.45	1.01	0.71	0.47	0.37					

Caudal	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
(l/s)	Espesor (mm)	3.7	4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
	Diámetro interior (mm)	32.6	40.8	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	327.4
3.20	Pérdida de carga "R" (mbar/m)		13.26	4.32	1.83	0.77	0.29	0.16					
	Velocidad "V" (m/sg)		2.45	1.54	1.08	0.75	0.50	0.39					
3.40	R		14.81	4.81	2.04	0.85	0.33	0.18					
	V		2.60	1.64	1.15	0.80	0.53	0.41					
3.60	R		16.44	5.34	2.26	0.94	0.36	0.20					
	V		2.75	1.73	1.22	0.85	0.57	0.44					
3.80	R		18.15	5.89	2.49	1.04	0.40	0.22					
	V		2.91	1.83	1.28	0.89	0.60	0.46					
4.00	R		19.94	6.46	2.73	1.14	0.43	0.24					
	V		3.06	1.93	1.35	0.94	0.63	0.49					
4.50	R		24.77	8.00	3.37	1.41	0.53	0.29	0.09				
	V		3.44	2.17	1.52	1.06	0.71	0.55	0.33				
5.00	R		30.08	9.70	4.08	1.70	0.64	0.35	0.11				
	V		3.82	2.41	1.69	1.18	0.79	0.61	0.37				
5.50	R			11.55	4.85	2.02	0.76	0.41	0.13				
	V			2.65	1.86	1.29	0.86	0.67	0.41				
6.00	R			13.54	5.69	2.36	0.89	0.48	0.15				
	V			2.89	2.03	1.41	0.94	0.73	0.45				
6.50	R			15.69	6.58	2.73	1.03	0.56	0.17				
	V			3.13	2.20	1.53	1.02	0.79	0.48				
7.00	R			17.99	7.53	3.12	1.18	0.64	0.20	0.07			
	V			3.37	2.36	1.65	1.10	0.85	0.52	0.33			
7.50	R			20.43	8.55	3.53	1.33	0.72	0.22	0.08			
	V			3.61	2.53	1.76	1.18	0.91	0.56	0.36			
8.00	R				9.62	3.97	1.50	0.81	0.25	0.08			
	V				2.70	1.88	1.26	0.98	0.60	0.38			
8.50	R				10.75	4.44	1.67	0.90	0.28	0.09			
	V				2.87	2.00	1.34	1.04	0.63	0.40			
9.00	R				11.95	4.93	1.85	1.00	0.31	0.10			
	V				3.04	2.12	1.41	1.10	0.67	0.43			
9.50	R				13.20	5.44	2.04	1.10	0.34	0.11			
	V				3.21	2.23	1.49	1.16	0.71	0.45			
10.00	R				14.51	5.97	2.24	1.21	0.37	0.13			
	V				3.38	2.35	1.57	1.22	0.74	0.48			
10.50	R				15.88	6.53	2.45	1.32	0.40	0.14	0.05		
	V				3.55	2.47	1.65	1.28	0.78	0.50	0.32		
11.00	R					7.11	2.67	1.44	0.44	0.15	0.05		
	V					2.59	1.73	1.34	0.82	0.52	0.33		
11.50	R					7.72	2.89	1.56	0.47	0.16	0.06		
	V					2.70	1.81	1.40	0.86	0.55	0.35		
12.00	R					8.35	3.13	1.69	0.51	0.17	0.06		
	V					2.82	1.89	1.46	0.89	0.57	0.36		
12.50	R					9.00	3.37	1.82	0.55	0.19	0.06		
10.00	V					2.94	1.96	1.52	0.93	0.59	0.38		
13.00	R					9.68	3.62	1.95	0.59	0.20	0.07		
10.50	V					3.06	2.04	1.58	0.97	0.62	0.40		
13.50	R					10.37	3.88	2.09	0.63	0.22	0.07		
14.00	V					3.17	2.12	1.65	1.00	0.64	0.41		
14.00	R					11.10	4.14	2.23	0.67	0.23	0.08		
	V					3.29	2.20	1.71	1.04	0.67	0.43		

Tabla 19.

Caudal	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
(l/s)	Espesor (mm)	3.7	4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
	Diámetro interior (mm)	32.6	40.8	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	327.4
14.50	Pérdida de carga "R" (mbar/m)					11.84	4.42	2.38	0.72	0.24	0.08		
	Velocidad "V" (m/sg)					3.41	2.28	1.77	1.08	0.69	0.44		
15.00	R					12.61	4.70	2.53	0.76	0.26	0.09		
	V					3.53	2.36	1.83	1.12	0.71	0.46		
15.50	R						4.99	2.69	0.81	0.28	0.09	0.03	
	V						2.44	1.89	1.15	0.74	0.47	0.30	
16.00	R						5.29	2.85	0.86	0.29	0.10	0.03	
	V						2.52	1.95	1.19	0.76	0.49	0.31	
16.50	R						5.60	3.01	0.91	0.31	0.11	0.03	
	V						2.59	2.01	1.23	0.78	0.50	0.32	
17.00	R						5.92	3.18	0.96	0.33	0.11	0.04	
	V						2.67	2.07	1.27	0.81	0.52	0.33	
17.50	R						6.24	3.35	1.01	0.34	0.12	0.04	
	V						2.75	2.13	1.30	0.83	0.53	0.34	
18.00	R						6.58	3.53	1.06	0.36	0.12	0.04	
	V						2.83	2.19	1.34	0.86	0.55	0.34	
18.50	R						6.92	3.71	1.12	0.38	0.13	0.04	
	V						2.91	2.26	1.38	0.88	0.56	0.35	
19.00	R						7.27	3.90	1.17	0.40	0.14	0.04	
	V						2.99	2.32	1.41	0.90	0.58	0.36	
19.50	R						7.63	4.09	1.23	0.42	0.14	0.05	
13.30	V						3.07	2.38	1.45	0.93	0.59	0.37	
20.00	R						7.99	4.29	1.29	0.44	0.15	0.05	
20.00	V						3.14	2.44	1.49	0.95	0.61	0.38	
20.50	R						8.37	4.49	1.45	0.46	0.16	0.05	
20.50	V						3.22						
21.00	R R						8.75	2.50	1.53	0.98	0.62	0.39	
21.00	V							4.69	1.41		0.16	0.05	
01.50							3.30 9.14	2.56	1.56 1.47	1.00	0.64	0.40	
21.50	R							4.90		0.50		0.06	
00.00	V						3.38	2.62	1.60	1.02	0.65	0.41	
22.00	R						9.54	5.11	1.53	0.52	0.18	0.06	
00.50	V						3.46	2.68	1.64	1.05	0.67	0.42	
22.50	R						9.94	5.33	1.60	0.54	0.18	0.06	
	V						3.54	2.74	1.67	1.07	0.68	0.43	
23.00	R							5.55	1.66	0.56	0.19	0.06	
	V							2.80	1.71	1.09	0.70	0.44	
23.50	R							5.77	1.73	0.58	0.20	0.07	
	V							2.86	1.75	1.12	0.71	0.45	
24.00	R							6.00	1.80	0.61	0.21	0.07	
	V							2.93	1.79	1.14	0.73	0.46	
24.50	R							6.23	1.87	0.63	0.21	0.07	
	V							2.99	1.82	1.17	0.75	0.47	
25.00	R							6.47	1.94	0.65	0.22	0.07	0.02
	V							3.05	1.86	1.19	0.76	0.48	0.30
25.50	R							6.71	2.01	0.68	0.23	0.08	0.02
	V							3.11	1.90	1.21	0.78	0.49	0.30
26.00	R							6.96	2.08	0.70	0.24	0.08	0.02
	V							3.17	1.93	1.24	0.79	0.50	0.31
26.50	R							7.21	2.15	0.73	0.25	0.08	0.03
	V							3.23	1.97	1.26	0.81	0.51	0.31

			ı	ı	ı	1	ı	1	I	ı	ı	ı	ı
Caudal	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
(l/s)	Espesor (mm)	3.7	4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
	Diámetro interior (mm)	32.6	40.8	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	327.4
27.00	Pérdida de carga "R" (mbar/m)							7.46	2.23	0.75	0.25	0.08	0.03
	Velocidad "V" (m/sg)							3.29	2.01	1.28	0.87	0.52	0.32
27.50	R							7.72	2.31	0.78	0.26	0.09	0.03
	V							3.35	2.05	1.31	0.84	0.53	0.33
28.00	R							7.98	2.38	0.80	0.27	0.09	0.03
	V							3.41	2.08	1.33	0.85	0.54	0.33
28.50	R							8.25	2.46	0.83	0.28	0.09	0.03
	V							3.47	2.12	1.36	0.87	0.55	0.34
29.00	R							8.52	2.54	0.86	0.29	0.10	0.03
	V							3.54	2.16	1.38	0.88	0.56	0.34
29.50	R								2.62	0.88	0.30	0.10	0.03
	V								2.20	1.40	0.90	0.57	0.35
30.00	R								2.71	0.91	0.31	0.10	0.03
	V								2.23	1.43	0.91	0.57	0.36
30.50	R								2.79	0.94	0.32	0.10	0.03
	V								2.27	1.45	0.93	0.58	0.36
31.00	R								2.87	0.97	0.33	0.11	0.03
	V								2.31	1.47	0.94	0.59	0.37
31.50	R								2.96	0.99	0.34	0.11	0.03
	V								2.34	1.50	0.96	0.6	0.37
32.00	R								3.05	1.02	0.35	0.11	0.04
	V								2.38	1.52	0.97	0.61	0.38
32.50	R								3.13	1.05	0.36	0.12	0.04
	V								2.42	1.55	0.99	0.62	0.39
33.00	R								3.22	1.08	0.37	0.12	0.04
	V								2.46	1.57	1.00	0.63	0.39
33.50	R								3.31	1.11	0.38	0.12	0.04
	V								2.49	1.59	1.02	0.64	0.40
34.00	R								3.41	1.14	0.39	0.13	0.04
	V								2.53	1.62	1.03	0.65	0.40
34.50	R								3.50	1.17	0.40	0.13	0.04
	V								2.57	1.64	1.05	0.66	0.41
35.00	R								3.59	1.21	0.41	0.13	0.04
	V								2.60	1.66	1.06	0.67	0.42
35.50	R								3.69	1.24	0.42	0.14	0.04
	V								2.64	1.69	1.08	0.68	0.42
36.00	R								3.79	1.27	0.43	0.14	0.04
	V								2.68	1.71	1.09	0.69	0.43
36.50	R								3.88	1.30	0.44	0.14	0.05
	V								2.72	1.74	1.11	0.7	0.43
37.00	R								3.98	1.33	0.45	0.15	0.05
	V								2.75	1.76	1.13	0.71	0.44
37.50	R								4.08	1.37	0.46	0.15	0.05
	V								2.79	1.78	1.14	0.72	0.45
38.00	R								4.18	1.40	0.47	0.15	0.05
0.5 =	V				1				2.83	1.81	1.16	0.73	0.45
38.50	R								4.29	1.44	0.48	0.16	0.05
00.00	V				1				2.87	1.83	1.17	0.74	0.46
39.00	R								4.39	1.47	0.50	0.16	0.05
	V				1				2.90	1.86	1.19	0.75	0.46

Tabla 21.

		1			1	1		l					
Caudal	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
(l/s)	Espesor (mm)	3.7	4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
	Diámetro interior (mm)	32.6	40.8	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	327.4
39.50	Pérdida de carga "R" (mbar/m)								4.50	1.50	0.51	0.17	0.05
	Velocidad "V" (m/sg)								2.94	1.88	1.20	0.76	0.47
40.00	R								4.60	1.54	0.52	0.17	0.05
	V								2.98	1.90	1.22	0.77	0.48
40.50	R								4.71	1.58	0.53	0.17	0.05
	V								3.01	1.93	1.23	0.78	0.48
41.00	R								4.82	1.61	0.54	0.18	0.06
	V								3.05	1.95	1.25	0.79	0.49
41.50	R								4.93	1.65	0.56	0.18	0.06
	V								3.09	1.97	1.26	0.80	0.49
42.00	R								5.04	1.68	0.57	0.19	0.06
	V								3.13	2.00	1.28	0.80	0.50
42.50	R								5.15	1.72	0.58	0.19	0.06
	V								3.16	2.02	1.29	0.81	0.50
43.00	R								5.26	1.76	0.59	0.19	0.06
	V								3.20	2.05	1.31	0.82	0.51
43.50	R								5.38	1.80	0.60	0.20	0.06
	V								3.24	2.07	1.32	0.83	0.52
44.00	R								5.49	1.83	0.62	0.2	0.06
	V								3.27	2.09	1.34	0.84	0.52
44.50	R								5.61	1.87	0.63	0.21	0.07
	V								3.31	2.12	1.35	0.85	0.53
45.00	R								5.73	1.91	0.64	0.21	0.07
	V								3.35	2.14	1.37	0.86	0.53
45.50	R								5.85	1.95	0.66	0.21	0.07
	V								3.39	2.16	1.38	0.87	0.54
46.00	R								5.97	1.99	0.67	0.22	0.07
	V								3.42	2.19	1.40	0.88	0.55
46.50	R								6.09	2.03	0.68	0.22	0.07
	V								3.46	2.21	1.41	0.89	0.55
47.00	R								6.21	2.07	0.70	0.23	0.07
	V								3.50	2.24	1.43	0.9	0.56
47.50	R								0.00	2.11	0.71	0.23	0.07
17.50	V									2.26	1.44	0.91	0.56
48.00	R									2.15	0.72	0.24	0.07
10.00	V									2.28	1.46	0.92	0.57
48.50	R									2.19	0.74	0.24	0.08
40.50	V									2.31	1.48	0.93	0.58
49.00	R									2.24	0.75	0.25	0.08
45.00	V									2.33	1.49	0.23	0.58
40.50													
49.50	R									2.28	0.77	0.25	0.08
FO 00	V									2.35	1.51	0.95	0.59
50.00	R									2.32	0.78	0.25	0.08
F0.75	V									2.38	1.52	0.96	0.59
50.50	R									2.36	0.79	0.26	0.08
	V									2.40	1.54	0.97	0.60
51.00	R									2.41	0.81	0.26	0.08
	V									2.43	1.55	0.98	0.61
51.50	R									2.45	0.82	0.27	0.08
	V									2.45	1.57	0.99	0.61

Courdel	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
Caudal			4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
(l/s)	Espesor (mm)	3.7	4.6	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	30.3
52.00	Diámetro interior (mm) Pérdida de carga "R" (mbar/m)	32.6	40.8	31.4	61.4	73.6	90.0	102.2	130.8	2.50	0.84	0.27	0.09
	Velocidad "V" (m/sg)									2.47	1.58	1.00	0.62
52.50	R									2.54	0.85	0.28	0.09
	V									2.50	1.60	1.01	0.62
53.00	R									2.59	0.87	0.28	0.09
	V									2.52	1.61	1.02	0.63
53.50	R									2.63	0.88	0.29	0.09
	V									2.55	1.63	1.02	0.64
54.00	R									2.68	0.90	0.29	0.09
	V									2.57	1.64	1.03	0.64
54.50	R									2.72	0.91	0.30	0.09
	V									2.59	1.66	1.04	0.65
55.00	R									2.77	0.93	0.30	0.10
	V									2.62	1.67	1.05	0.65
55.50	R									2.82	0.94	0.31	0.10
	V									2.64	1.69	1.06	0.66
56.00	R									2.86	0.96	0.31	0.10
	V									2.66	1.70	1.07	0.67
56.50	R									2.91	0.98	0.32	0.10
	V									2.69	1.72	1.08	0.67
57.00	R									2.96	0.99	0.32	0.10
	V									2.71	1.73	1.09	0.68
57.50	R									3.01	1.01	0.33	0.10
	V									2.74	1.75	1.10	0.68
58.00	R									3.06	1.02	0.33	0.10
	V									2.76	1.76	1.11	0.69
58.50	R									3.10	1.04	0.34	0.11
	V									2.78	1.78	1.12	0.69
59.00	R									3.15	1.06	0.34	0.11
	V									2.81	1.79	1.13	0.70
59.50	R									3.20	1.07	0.35	0.11
	V									2.83	1.81	1.14	0.71
60.00	R									3.25	1.09	0.35	0.11
	V									2.85	1.82	1.15	0.71
60.50	R									3.30	1.11	0.36	0.11
	V									2.88	1.84	1.16	0.72
61.00	R									3.35	1.12	0.37	0.11
	V									2.90	1.86	1.17	0.72
61.50	R									3.41	1.14	0.37	0.12
	V									2.93	1.87	1.18	0.73
62.00	R									3.46	1.16	0.38	0.12
	V									2.95	1.89	1.19	0.74
62.50	R									3.51	1.17	0.38	0.12
	V									2.97	1.90	1.20	0.74
63.00	R									3.56	1.19	0.39	0.12
00.75	V									3.00	1.92	1.21	0.75
63.50	R									3.61	1.21	0.39	0.12
64.00	V									3.02	1.93	1.22	0.75
64.00	R									3.67	1.23	0.40	0.13
	V			1						3.04	1.95	1.23	0.76

Tabla 23.

Caudal	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
(l/s)	Espesor (mm)	3.7	4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
	Diámetro interior (mm)	32.6	40.8	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	327.4
64.50	Pérdida de carga "R" (mbar/m)									3.72	1.24	0.40	0.13
	Velocidad "V" (m/sg)									3.07	1.96	1.24	0.77
65.00	R									3.77	1.26	0.41	0.13
	V									3.09	1.98	1.25	0.77
65.50	R									3.83	1.28	0.42	0.13
	V									3.12	1.99	1.25	0.78
66.00	R									3.88	1.30	0.42	0.13
	V									3.14	2.01	1.26	0.78
66.50	R									3.94	1.32	0.43	0.13
	V									3.16	2.02	1.27	0.79
67.00	R									3.99	1.33	0.43	0.14
	V									3.19	2.04	1.28	0.80
67.50	R									4.05	1.35	0.44	0.14
	V									3.21	2.05	1.29	0.80
68.00	R									4.11	1.37	0.45	0.14
00.50	V									3.23	2.07	1.30	0.81
68.50	R									4.16	1.39	0.45	0.14
60.00	V									3.26	2.08	1.31 0.46	0.81
69.00	R V									4.22 3.28	1.41 2.10	1.32	0.14 0.82
69.50	R									4.28	1.43	0.46	0.15
03.30	V									3.31	2.11	1.33	0.83
70.00	R									4.33	1.45	0.47	0.15
70.00	V									3.33	2.13	1.34	0.83
70.50	R									4.39	1.47	0.48	0.15
	V									3.35	2.14	1.35	0.84
71.00	R									4.45	1.49	0.48	0.15
	V									3.38	2.16	1.36	0.84
71.50	R									451	1.50	0.49	0.15
	V									3.40	2.17	1.37	0.85
72.00	R									4.57	1.52	0.49	0.16
	V									3.43	2.19	1.38	0.86
72.50	R									4.63	1.54	0.50	0.16
	V									3.45	2.21	1.39	0.86
73.00	R									4.69	1.56	0.51	0.16
	V									3.47	2.22	1.40	0.87
73.50	R									4.75	1.58	0.51	0.16
	V									3.50	2.24	1.41	0.87
74.00	R										1.60	0.52	0.16
	V										2.25	1.42	0.88
74.50	R										1.62	0.53	0.17
	V	1						1			2.27	1.43	0.88
75.00	R										1.64	0.53	0.17
	V										2.28	1.44	0.89
75.50	R										1.66	0.54	0.17
70.00	V	1						1			2.30	1.45	0.90
76.00	R										1.68	0.55	0.17
76.50	V	1						1			2.31	1.46	0.90
76.50	R										1.70	0.55	0.17
	V										2.33	1.47	0.91

									1				
Caudal	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
(l/s)	Espesor (mm)	3.7	4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
	Diámetro interior (mm)	32.6	40.8	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	327.4
77.00	Pérdida de carga "R" (mbar/m)										1.73	0.56	0.18
	Velocidad "V" (m/sg)										2.34	1.48	0.91
77.50	R										1.75	0.57	0.18
	V										2.36	1.48	0.92
78.00	R										1.77	0.57	0.18
	V										2.37	1.49	0.93
78.50	R										1.79	0.58	0.18
	V										2.39	1.50	0.93
79.00	R										1.81	0.59	0.18
	V										2.40	1.51	0.94
79.50	R										1.83	0.59	0.19
	V										2.42	1.52	0.94
80.00	R										1.85	0.60	0.19
	V										2.43	1.53	0.95
80.50	R										1.87	0.61	0.19
	V										2.45	1.54	0.96
81.00	R										1.89	0.61	0.19
	V										2.46	1.55	0.96
81.50	R										1.92	0.62	0.19
	V										2.48	1.56	0.97
82.00	R										1.94	0.63	0.20
	V										2.49	1.57	0.97
82.50	R										1.96	0.63	0.20
00.00	V										2.51	1.58	0.98
83.00	R										1.98	0.64	0.20
00.50	V R										2.52	1.59	0.99
83.50	V										2.03 2.55	0.65 1.60	0.20 0.99
84.00	R										2.05	0.66	0.99
64.00	V										2.57	1.61	1.00
84.50	R										2.07	0.66	0.21
04.50	V										2.59	1.62	1.00
85.00	R										2.30	0.67	0.21
03.00	V										2.74	1.63	1.01
90.00	R										2.55	0.74	0.23
	V										2.89	1.72	1.07
95.00	R										2.80	0.82	0.26
	V										3.04	1.82	1.13
100.00	R										3.35	0.90	0.28
	V										3.35	1.97	1.19
110.00	R										3.94	1.08	0.34
	V										3.65	2.11	1.31
120.00	R											1.26	0.39
120.00	V											2.30	1.43
130.00	R											1.47	0.46
	V											2.49	1.54
140.00	R											1.68	0.52
	V											2.68	1.66
150.00	R											1.91	0.59
	V											2.87	1.78
		1	1	1	T.	1	1	1	T.	T.	t .	t .	I .

Tabla 25.

Rotoplas

Caudal	Diámetro exterior (mm)	40	50	63	75	90	110	125	160	200	250	315	400
(l/s)	Espesor (mm)	3.7	4.6	5.8	6.8	8.2	10	11.4	14.6	18.2	22.7	28.6	36.3
	Diámetro interior (mm)	32.6	40.8	51.4	61.4	73.6	90.0	102.2	130.8	163.6	204.6	257.8	327.4
160.00	Pérdida de carga "R" (mbar/m)											2.16	0.67
	Velocidad "V" (m/sg)											3.07	1.90
170.00	R											2.42	0.75
	V											3.26	2.02
180.00	R											2.69	0.83
	V											3.45	2.14
190.00	R											2.98	0.92
	V											3.64	2.26
200.00	R												1.01
	V												2.38
210.00	R												1.11
	V												2.49
220.00	R												1.21
	V												2.61
230.00	R												1.31
	٧												2.73
240.00	R												1.42
	V												2.85
250.00	R												1.53
	V												2.97
260.00	R												1.65
	V												3.09
270.00	R												1.77
	V												3.21
280.00	R												1.89
	V												3.33
290.00	R												2.02
	V												3.44
300.00	R												2.15
	V												3.56

Tabla 27.

5.2.3. Pérdidas de carga unitarias de las tuberías serie 8/SDR 17

Caudal	Diámetro exterior (mm)	75	90	110	125	160	200	250	315	400	500
(l/s)	Espesor (mm)	4.5	5.4	6.6	7.4	9.5	11.9	14.8	18.7	23.7	29.7
(-,-,	Diámetro interior (mm)	66.0	79.2	96.8	110.2	141.0	176.2	220.4	277.6	352.6	440.6
1.10	Pérdida de carga "R" (mbar/m)	0.20	100		11111						
	Velocidad "V" (m/sg)	0.32									
1.20	R	0.23									
	V	0.35									
1.30	R	0.26									
	V	0.38									
1.40	R	0.30									
	V	0.41									
1.50	R	0.34	0.14								
	V	0.44	0.30								
1.60	R	0.38	0.16								
	V	0.47	0.32								
1.70	R	0.42	0.18								
	V	0.50	0.35								
1.80	R	0.47	0.20								
	V	0.53	0.37								
1.90	R	0.51	0.22								
	V	0.56	0.39								
2.00	R	0.56	0.24								
	V	0.58	0.41								
2.20	R	0.66	0.28	0.11							
	V	0.64	0.45	0.30							
2.40	R	0.77	0.32	0.12							
	V	0.70	0.49	0.33							
2.60	R	0.89	0.37	0.14							
	V	0.76	0.53	0.35							
2.80	R	1.02	0.43	0.16							
	V	0.82	0.57	0.38							
3.00	R	1.15	0.48	0.18	0.10						
	V	0.88	0.61	0.41	0.31						
3.20	R	1.29	0.54	0.21	0.11						
	V	0.94	0.65	0.43	0.34						
3.40	R	1.44	0.60	0.23	0.12						
	V	0.99	0.69	0.46	0.36						
3.60	R	1.59	0.66	0.25	0.14						
	V	1.05	0.73	0.49	0.38						
3.80	R	1.76	0.73	0.28	0.15						
	V	1.11	0.77	0.52	0.40						
4.00	R	1.93	0.80	0.31	0.16						
	V	1.17	0.81	0.54	0.42						
4.50	R	2.38	0.99	0.38	0.20						
	V	1.32	0.91	0.61	0.47						
5.00	R	2.88	1.19	0.45	0.24						
	V	1.46	1.01	0.68	0.52						
5.50	R	3.24	1.41	0.54	0.29						
	V	1.46	1.12	0.75	0.58						
6.00	R	4.00	1.65	0.63	0.34	0.10					
	V	1.75	1.22	0.82	0.63	0.38					
6.50	R	4.63	1.91	0.73	0.39	0.12					
	V	1.90	1.32	0.88	0.68	0.42					
		The second secon	The second second	1	The second second	T. Control of the Con	The second second				

Conducción

Caudal	Diámetro exterior (mm)	75	90	110	125	160	200	250	315	400	500
(l/s)	Espesor (mm)	4.5	5.4	6.6	7.4	9.5	11.9	14.8	18.7	23.7	29.7
	Diámetro interior (mm)	66.0	79.2	96.8	110.2	141.0	176.2	220.4	277.6	352.6	440.6
7.00	Pérdida de carga "R" (mbar/m)	3.50	2.18	0.83	0.44	0.14					
	Velocidad "V" (m/sg)	2.05	1.42	0.95	0.73	0.45					
7.50	R	6.01	2.48	0.94	0.50	0.15					
	V	2.19	1.52	1.02	0.79	0.48					
8.00	R	6.76	2.78	1.05	0.56	0.17					
	V	2.34	1.62	1.09	0.84	0.51					
8.50	R	7.55	3.11	1.18	0.63	0.19					
	V	2.48	1.73	1.15	0.89	0.54					
9.00	R	8.39	3.45	1.30	0.70	0.21					
	V	2.63	1.83	1.22	0.94	0.58					
9.50	R	9.26	3.80	1.44	0.77	0.23					
	V	2.78	1.93	1.29	1.00	0.61					
10.00	R	10.18	4.18	1.58	0.84	0.26					
	V	2.92	2.03	1.36	1.05	0.64					
10.50	R	11.14	4.57	1.72	0.92	0.28	0.10				
	V	3.07	2.13	1.43	1.10	0.67	0.43				
11.00	R	12.04	4.97	1.87	1.00	0.30	0.10				
	V	3.22	2.23	1.49	1.15	0.70	0.45				
11.50	R	3.18	5.39	2.03	1.08	0.33	0.11				
	V	3.36	2.33	1.56	1.21	0.74	0.41				
12.00	R	14.26	5.83	2.19	1.17	0.36	0.12	0.04			
	V	3.51	2.44	1.63	1.26	0.77	0.49	0.31			
12.50	R		6.29	2.36	1.26	0.38	0.13	0.04			
	V		2.54	1.70	1.31	0.80	0.51	0.33			
13.00	R		6.76	2.54	1.35	0.41	0.14	0.05			
	V		2.64	1.77	1.36	0.83	0.53	0.34			
13.50	R		7.24	2.72	1.45	0.44	0.15	0.05			
	V		2.74	1.83	1.42	0.86	0.55	0.35			
14.00	R		7.74	2.91	1.55	0.47	0.16	0.05			
	V		2.84	1.90	1.47	0.90	0.57	0.37			
14.50	R		8.26	3.10	1.65	0.50	0.17	0.06			
	V		2.94	1.97	1.52	0.93	0.59	0.38			
15.00	R		8.79	3.30	1.75	0.53	0.18	0.06			
	V		3.04	2.04	1.57	0.96	0.62	0.39			
15.50	R		9.34	3.50	1.86	0.56	0.19	0.07			
	V		3.15	2.11	1.63	0.99	0.64	0.41			
16.00	R		9.91	3.71	1.97	0.60	0.20	0.07			
	V		3.25	2.17	1.68	1.02	0.66	0.42			
16.50	R		10.49	3.92	2.09	0.63	0.22	0.07			
	V		3.35	2.24	1.73	1.06	0.68	0.43			
17.00	R		11.09	4.15	2.20	0.67	0.23	0.08			
	V		3.45	2.31	1.78	1.09	0.7	0.45			
17.50	R		11.70	4.37	2.32	0.7	0.24	0.08			
	V		3.55	2.38	1.83	1.12	0.72	0.46			
18.00	R			4.60	2.45	0.74	0.25	0.09			
	V			2.45	1.89	1.15	0.74	0.47			
18.50	R			4.84	2.57	0.78	0.26	0.09			
	V			2.51	1.94	1.18	0.76	0.48	<u></u>		
19.00	R			5.09	2.70	0.82	0.28	0.09			
	V			2.58	1.99	1.22	0.78	0.50			

(I/s) 19.50 20.00 20.50 21.00 21.50 22.00 23.50 23.50	Espesor (mm) Diámetro interior (mm) Pérdida de carga "R" (mbar/m) Velocidad "V" (m/sg) R V R V R V R V R V R V R V R V R V R V R V R V	4.5	5.4	6.6 96.8 5.34 2.65 5.59 2.72 5.85 2.79 6.12 2.85 6.39 2.92 6.67 2.99	7.4 110.2 2.83 2.04 2.97 2.10 3.10 2.15 3.24 2.20 3.39 2.25 3.53	9.5 141.0 0.85 1.25 0.90 1.28 0.94 1.31 0.98 1.34	11.9 176.2 0.29 0.80 0.30 0.82 0.32 0.84 0.33 0.86	14.8 220.4 0.10 0.51 0.10 0.52 0.11 0.54 0.11	18.7 277.6 0.03 0.32 0.03 0.33 0.04 0.34 0.04 0.35	23.7	29.7
20.00 20.50 21.00 21.50 22.00 22.50 23.00	Pérdida de carga "R" (mbar/m) Velocidad "V" (m/sg) R V R V R V R V R V R V R V R	66.0	79.2	5.34 2.65 5.59 2.72 5.85 2.79 6.12 2.85 6.39 2.92 6.67	2.83 2.04 2.97 2.10 3.10 2.15 3.24 2.20 3.39 2.25	0.85 1.25 0.90 1.28 0.94 1.31 0.98 1.34	0.29 0.80 0.30 0.82 0.32 0.84 0.33 0.86	0.10 0.51 0.10 0.52 0.11 0.54	0.03 0.32 0.03 0.33 0.04 0.34 0.04	352.6	440.6
20.00 20.50 21.00 21.50 22.00 22.50 23.00	(mbar/m) Velocidad "V" (m/sg) R V R V R V R V R V R V R V R V			2.65 5.59 2.72 5.85 2.79 6.12 2.85 6.39 2.92 6.67	2.04 2.97 2.10 3.10 2.15 3.24 2.20 3.39 2.25	1.25 0.90 1.28 0.94 1.31 0.98 1.34	0.80 0.30 0.82 0.32 0.84 0.33 0.86	0.51 0.10 0.52 0.11 0.54	0.32 0.03 0.33 0.04 0.34		
20.50 21.00 21.50 22.00 22.50 23.00	R V R V R V R V R V R V R V			5.59 2.72 5.85 2.79 6.12 2.85 6.39 2.92 6.67	2.97 2.10 3.10 2.15 3.24 2.20 3.39 2.25	0.90 1.28 0.94 1.31 0.98 1.34	0.30 0.82 0.32 0.84 0.33 0.86	0.10 0.52 0.11 0.54 0.11	0.03 0.33 0.04 0.34 0.04		
20.50 21.00 21.50 22.00 22.50 23.00	V R V R V R V R V R V R V			2.72 5.85 2.79 6.12 2.85 6.39 2.92 6.67	2.10 3.10 2.15 3.24 2.20 3.39 2.25	1.28 0.94 1.31 0.98 1.34	0.82 0.32 0.84 0.33 0.86	0.52 0.11 0.54 0.11	0.33 0.04 0.34 0.04		
21.00 21.50 22.00 22.50 23.00	R V R V R V R V R V R V			5.85 2.79 6.12 2.85 6.39 2.92 6.67	3.10 2.15 3.24 2.20 3.39 2.25	0.94 1.31 0.98 1.34	0.32 0.84 0.33 0.86	0.11 0.54 0.11	0.04 0.34 0.04		
21.00 21.50 22.00 22.50 23.00	V R V R V R V R V R V			2.79 6.12 2.85 6.39 2.92 6.67	2.15 3.24 2.20 3.39 2.25	1.31 0.98 1.34	0.84 0.33 0.86	0.54	0.34		
21.50 22.00 22.50 23.00	R V R V R V R V			6.12 2.85 6.39 2.92 6.67	3.24 2.20 3.39 2.25	0.98 1.34	0.33 0.86	0.11	0.04		
21.50 22.00 22.50 23.00	V R V R V R V			2.85 6.39 2.92 6.67	2.20 3.39 2.25	1.34	0.86				
22.00 22.50 23.00	R V R V R V R			6.39 2.92 6.67	3.39 2.25			0.55	0.35		
22.00 22.50 23.00	V R V R V			2.92 6.67	2.25	1.02					
22.50	R V R V			6.67			0.35	0.12	0.04		
22.50	V R V R				3.53	1.38	0.88	0.56	0.36		
23.00	R V R			2.99		1.06	0.36	0.12	0.04		
23.00	v R				2.31	1.41	0.90	0.58	0.36		
	R			6.95	3.68	1.11	0.38	0.13	0.04		
				3.06	2.36	1.44	0.92	0.59	0.37		
23.50	V			7.24	3.83	1.15	0.39	0.13	0.04		
23.50				3.13	2.41	1.47	0.94	0.60	0.38		
	R			7.53	3.99	1.20	0.41	0.14	0.05		
	V			3.19	2.46	1.51	0.96	0.62	0.39		
24.00	R			7.83	4.15	1.25	0.42	0.14	0.05		
	V			3.26	2.52	1.54	0.98	0.63	0.40		
24.50	R			8.14	4.31	1.29	0.44	0.15	0.05		
	V			3.33	2.57	1.57	1.00	0.64	0.40		
25.00	R			8.45	4.47	1.34	0.46	0.15	0.05		
	V			3.40	2.62	1.60	1.03	0.66	0.41		
25.50	R			8.76	4.64	1.39	0.47	0.16	0.05		
	V			3.46	2.67	1.63	1.05	0.67	0.42		
36.00	R			9.09	4.81	1.44	0.49	0.17	0.05		
	V			3.53	2.73	1.67	1.07	0.68	0.43		
36.50	R				4.98	1.49	0.51	0.17	0.06		
	V				2.78	1.70	1.09	0.69	0.44		
27.00	R				5.15	1.55	0.52	0.18	0.06		
	V				2.83	1.73	1.11	0.71	0.45		
27.50	R				5.33	1.60	0.54	0.18	0.06		
	V				2.88	1.76	1.13	0.72	0.45		
28.00	R				5.51	1.65	0.56	0.19	0.06		
	V				2.94	1.79	1.15	0.73	0.46		
28.50	R				5.70	1.71	0.58	0.20	0.06		
	V				2.99	1.83	1.17	0.75	0.47		
29.00	R				5.88	1.76	0.60	0.20	0.07	0.02	
	V				3.04	1.86	1.19	0.76	0.48	0.30	
29.50	R				6.07	1.82	0.62	0.21	0.07	0.02	
	V				3.09	1.89	1.21	0.77	0.49	0.30	
30.00	R				6.26	1.88	0.63	0.22	0.07	0.02	
	V				3.15	1.82	1.23	0.78	0.50	0.31	
30.50	R				6.46	1.93	0.65	0.22	0.07	0.02	
	V				3.20	1.95	1.25	0.80	0.50	0.31	
31.00	R				6.66	1.99	0.67	0.23	0.08	0.02	
	V				3.25	1.99	1.27	0.81	0.51	0.32	
31.50	R				6.86	2.05	0.69	0.23	0.08	0.02	
	V				3.30	2.02	1.29	0.83	0.52	0.32	

Tabla 29.

Conducción

Caudal	Diámetro exterior (mm)	75	90	110	125	160	200	250	315	400	500
(l/s)	Espesor (mm)	4.5	5.4	6.6	7.4	9.5	11.9	14.8	18.7	23.7	29.7
	Diámetro interior (mm)	66.0	79.2	96.8	110.2	141.0	176.2	220.4	277.6	352.6	440.6
32.00	Pérdida de carga "R" (mbar/m)				7.06	2.11	0.71	0.24	0.08	0.03	
	Velocidad "V" (m/sg)				3.36	2.05	1.31	0.84	0.53	0.33	
32.50	R				7.27	2.17	0.73	0.25	0.08	0.03	
	V				3.41	2.08	1.33	0.85	0.54	0.33	
33.00	R				7.48	2.23	0.76	0.26	0.08	0.03	
	V				3.46	2.11	1.35	0.86	0.55	0.34	
33.50	R				7.69	2.30	0.78	0.26	0.09	0.03	
	V				3.51	2.15	1.37	0.88	0.55	0.34	
34.00	R					2.36	0.80	0.27	0.09	0.03	
	V					2.18	1.39	0.89	0.56	0.35	
34.50	R					2.42	0.82	0.28	0.09	0.03	
	V					2.21	1.41	0.90	0.57	0.35	
35.00	R					2.49	0.84	0.28	0.09	0.03	
	V					2.24	1.44	0.92	0.58	0.36	
35.50	R					2.55	0.86	0.29	0.10	0.03	
	V					2.27	1.46	0.93	0.59	0.36	
36.00	R					2.62	0.88	0.30	0.10	0.03	
	V					2.31	1.48	0.94	0.59	0.37	
36.50	R					2.69	0.91	0.31	0.10	0.03	
	V					2.34	1.50	0.96	0.60	0.37	
37.00	R					2.76	0.93	0.31	0.10	0.03	
	V					2.37	1.52	0.97	0.61	0.38	
37.50	R					2.83	0.95	0.32	0.11	0.03	
	V					2.40	1.54	0.98	0.62	0.38	
38.00	R					2.90	0.98	0.33	0.11	0.03	
	V					2.43	1.56	1.00	0.63	0.39	
38.50	R					2.97	1.00	0.34	0.11	0.04	
	V					2.47	1.58	1.01	0.64	0.39	
39.00	R					3.04	1.02	0.35	0.11	0.04	
	V					2.50	1.60	1.02	0.64	0.40	
39.50	R					3.11	1.05	0.35	0.12	0.04	
	V					2.53	1.62	1.04	0.65	0.40	
40.00	R					3.18	1.07	0.36	0.12	0.04	
	V					2.56	1.64	1.05	0.66	0.41	
40.50	R					3.26	1.10	0.37	0.12	0.04	
	V					2.59	1.66	1.06	0.67	0.41	
41.00	R					3.33	1.12	0.38	0.12	0.04	
	V					2.63	1.68	1.07	0.68	0.42	
41.50	R					3.41	1.15	0.39	0.13	0.04	
	V					2.66	1.70	1.09	0.69	0.43	
42.00	R					3.48	1.17	0.40	0.13	0.04	
	V					2.69	1.72	1.10	0.69	0.43	
42.50	R					3.56	1.20	0.40	0.13	0.04	
	V					2.72	1.74	1.11	0.70	0.44	
43.00	R					3.64	1.22	0.41	0.14	0.04	
	V					2.75	1.76	1.13	0.71	0.44	
43.50	R					3.72	1.25	0.42	0.14	0.04	
	V					2.79	1.78	1.14	0.72	0.45	
44.00	R					3.80	1.28	0.43	0.14	0.04	
	V					2.82	1.80	1.15	0.73	0.45	

			1			1	1		ı	ı	
Caudal	Diámetro exterior (mm)	75	90	110	125	160	200	250	315	400	500
(l/s)	Espesor (mm)	4.5	5.4	6.6	7.4	9.5	11.9	14.8	18.7	23.7	29.7
	Diámetro interior (mm)	66.0	79.2	96.8	110.2	141.0	176.2	220.4	277.6	352.6	440.6
44.50	Pérdida de carga "R" (mbar/m)					3.88	1.30	0.44	0.14	0.05	
10.00	Velocidad "V" (m/sg)					2.85	1.82	1.17	0.74	0.46	
45.00	R					3.96	1.33	0.45	0.15	0.05	0.02
45.50	V					2.88	1.85	1.18	0.74	0.46	0.30
45.50	R V					4.04 2.91	1.36 1.87	0.46 1.19	0.15 0.75	0.05 0.47	0.02 0.30
46.00	R					4.12	1.39	0.47	0.75	0.05	0.02
40.00	V					2.95	1.89	1.21	0.76	0.47	0.30
46.50	R					4.21	1.41	0.48	0.16	0.05	0.02
	V					2.98	1.91	1.22	0.77	0.48	0.30
47.00	R					4.29	1.44	0.49	0.16	0.05	0.02
	V					3.01	1.93	1.23	0.78	0.48	0.31
47.50	R					4.38	1.47	0.49	0.16	0.05	0.02
	V					3.04	1.95	1.25	0.78	0.49	0.31
48.00	R					4.46	1.50	0.50	0.17	0.05	0.02
	V					3.07	1.97	1.26	0.79	0.49	0.31
48.50	R					4.55	1.53	0.51	0.17	0.05	0.02
	V					3.11	1.99	1.27	0.80	0.50	0.32
49.00	R					4.64	1.56	0.52	0.17	0.05	0.02
	V					3.14	2.01	1.28	0.81	0.50	0.32
49.50	R					4.73	1.59	0.53	0.17	0.06	0.02
	V					3.17	2.03	1.30	0.82	0.51	0.32
50.00	R					4.81	1.62	0.54	0.18	0.06	0.02
F1 00	V					3.20	2.05	1.31	0.83	0.51	0.33
51.00	R					4.99	1.68 2.09	0.56	0.18	0.06	0.02
52.00	V R					3.27 5.18	1.74	1.34 0.58	0.84	0.52 0.06	0.33 0.02
32.00	V					3.33	2.13	1.36	0.86	0.53	0.34
53.00	R					5.37	1.80	0.60	0.20	0.06	0.02
	V					3.39	2.17	1.39	0.88	0.54	0.35
54.00	R					5.56	1.86	0.63	0.20	0.06	0.02
	V					3.46	2.21	1.42	0.89	0.55	0.35
55.00	R					5.75	1.93	0.65	0.21	0.07	0.02
	V					3.52	2.26	1.44	0.91	0.56	0.36
56.00	R					5.94	1.99	0.67	0.22	0.07	0.02
	V					3.59	2.30	1.47	0.93	0.57	0.37
57.00	R						2.06	0.69	0.23	0.07	0.02
	V						2.34	1.49	0.94	0.58	0.37
58.00	R						2.12	0.71	0.23	0.07	0.03
	V						2.38	1.52	0.96	0.59	0.38
59.00	R						2.19	0.74	0.24	0.08	0.03
20.00	V						2.42	1.55	0.97	0.60	0.39
60.00	R V						2.26	0.76	0.25	0.08	0.03
61.00	R						2.46	1.57 0.78	0.99	0.61	0.39
01.00	V						2.50	1.60	1.01	0.62	0.40
62.00	R						2.40	0.81	0.26	0.02	0.40
	V						2.54	1.63	1.02	0.63	0.41
63.00	R						2.47	0.83	0.27	0.09	0.03
	V						2.58	1.64	1.04	0.65	0.41
		1	ſ	I	I	1	1	1	1	I .	I .

Tabla 31.

Caudal	Diámetro exterior (mm)	75	90	110	125	160	200	250	315	400	500
(l/s)	Espesor (mm)	4.5	5.4	6.6	7.4	9.5	11.9	14.8	18.7	23.7	29.7
	Diámetro interior (mm)	66.0	79.2	96.8	110.2	141.0	176.2	220.4	277.6	352.6	440.6
64.00	Pérdida de carga "R" (mbar/m)						2.55	0.85	0.28	0.09	0.03
	Velocidad "V" (m/sg)						2.62	1.68	1.06	0.66	0.42
65.00	R						2.62	0.88	0.29	0.09	0.03
	V						2.67	1.70	1.07	0.67	0.43
66.00	R						2.70	0.90	0.29	0.09	0.03
	V						2.71	1.73	1.09	0.68	0.43
67.00	R						2.77	0.93	0.30	0.10	0.03
	V						2.75	1.76	1.11	0.69	0.44
68.00	R						2.85	0.95	0.31	0.10	0.03
	V						2.79	1.78	1.12	0.70	0.45
69.00	R						2.93	0.98	0.32	0.10	0.03
	V						2.83	1.81	1.14	0.71	0.45
70.00	R						3.01	1.01	0.33	0.10	0.04
	V						2.87	1.83	1.16	0.72	0.46
71.00	R						3.09	1.03	0.34	0.11	0.04
	V						2.91	1.86	1.17	0.73	0.47
72.00	R						3.18	1.06	0.34	0.11	0.04
	V						2.95	1.89	1.19	0.74	0.47
73.00	R						3.25	1.09	0.35	0.11	0.04
	V						2.99	1.91	1.21	0.75	0.48
74.00	R						3.34	1.11	0.36	0.11	0.04
	V						3.03	1.94	1.22	0.76	0.49
75.00	R						3.42	1.14	0.37	0.12	0.04
	V						3.08	1.97	1.24	0.77	0.49
76.00	R						3.51	1.17	0.38	0.12	0.04
	V						3.12	1.99	1.26	0.78	0.50
77.00	R						3.59	1.20	0.39	0.12	0.04
	V						3.16	2.02	1.27	0.79	0.51
78.00	R						3.68	1.23	0.40	0.13	0.04
	V						3.20	2.04	1.29	0.80	0.51
79.00	R						3.77	1.26	0.41	0.13	0.04
	V						3.24	2.07	1.31	0.81	0.52
80.00	R						3.86	1.29	0.42	0.13	0.04
	V						3.28	2.10	1.32	0.82	0.52
81.00	R						3.95	1.32	0.43	0.13	0.05
	V						3.32	2.12	1.34	0.83	0.53
82.00	R						4.04	1.35	0.44	0.14	0.05
	V						3.36	2.15	1.35	0.84	0.54
83.00	R						4.13	1.38	0.45	0.14	0.05
	V						3.40	2.18	1.37	0.85	0.54
84.00	R						4.22	1.41	0.46	0.14	0.05
	V						3.44	2.20	1.39	0.86	0.55
85.00	R						4.32	1.44	0.47	0.15	0.05
	V						3.49	2.23	1.40	0.87	0.56
86.00	R						4.41	1.47	0.48	0.15	0.05
	V						3.53	2.25	1.42	0.88	0.56
87.00	R						4.51	1.50	0.49	0.15	0.05
	V						3.57	2.28	1.44	0.89	0.57
88.00	R						1.2.	1.53	0.50	0.16	0.05
55.00	V							2.31	1.45	0.90	0.58

											Contacci
Caudal	Diámetro exterior (mm)	75	90	110	125	160	200	250	315	400	500
(l/s)	Espesor (mm)	4.5	5.4	6.6	7.4	9.5	11.9	14.8	18.7	23.7	29.7
	Diámetro interior (mm)	66.0	79.2	96.8	110.2	141.0	176.2	220.4	277.6	352.6	440.6
89.00	Pérdida de carga "R" (mbar/m)							1.57	0.51	0.16	0.05
	Velocidad "V" (m/sg)							2.33	1.47	0.91	0.58
90.00	R							1.60	0.52	0.16	0.06
	V							2.36	1.49	0.92	0.59
91.00	R							1.63	0.53	0.17	0.06
	V							2.39	1.50	0.93	0.60
92.00	R							1.67	0.54	0.17	0.06
	V							2.41	1.52	0.94	0.60
93.00	R							1.70	0.55	0.17	0.06
	V							2.44	1.54	0.95	0.61
94.00	R							1.73	0.56	0.18	0.06
	V							2.46	1.55	0.96	0.62
95.00	R							1.77	0.57	0.18	0.06
	V							2.49	1.57	0.97	0.62
96.00	R							1.80	0.58	0.18	0.06
	V							2.52	1.59	0.98	0.63
97.00	R							1.84	0.60	0.19	0.06
	V							2.54	1.60	0.99	0.64
98.00	R							1.87	0.61	0.19	0.06
30.00	V							2.57	1.62	1.00	0.64
99.00	R							1.91	0.62	0.19	0.07
33.00	V							2.59	1.64	1.01	0.65
100.00	R							1.94	0.63	0.20	0.03
100.00	V							2.62	1.65	1.02	0.66
110.00	R							2.32	0.75	0.23	0.08
110.00	V							2.88	1.82	1.13	0.72
120.00	R							2.73	0.88	0.27	0.72
120.00	V							3.15	1.98	1.23	0.09
120.00										0.32	
130.00	R V							3.17 3.41	1.02 2.15	1.33	0.11 0.85
140.00											
140.00	R V							3.64	1.17	0.36	0.12
150.00								3.67	2.31	1.43	0.92
150.00	R								1.33	0.41	0.14 0.98
100.00	V								2.48	1.54	
160.00	R								1.50	0.47	0.16
150.00	V								2.64	1.64	1.05
170.00	R								1.68	0.52	0.18
	V								2.81	1.74	1.11
180.00	R								1.87	0.58	0.20
	V								2.97	1.84	1.18
190.00	R								2.07	0.64	0.22
	V								3.14	1.95	1.25
200.00	R								2.27	0.70	0.24
	V								3.30	2.05	1.31
210.00	R								2.49	0.77	0.26
	V								3.47	2.15	1.38
220.00	R									0.84	0.28
	V									2.25	1.44
230.00	R									0.91	0.31
	V									2.36	1.51

Tabla 33.

Conducción

Caudal	Diámetro exterior (mm)	75	90	110	125	160	200	250	315	400	500
(l/s)	Espesor (mm)	4.5	5.4	6.6	7.4	9.5	11.9	14.8	18.7	23.7	29.7
	Diámetro interior (mm)	66.0	79.2	96.8	110.2	141.0	176.2	220.4	277.6	352.6	440.6
240.00	Pérdida de carga "R" (mbar/m)									0.99	0.33
	Velocidad "V" (m/sg)									2.46	1.57
250.00	R									1.06	0.36
	V									2.56	1.64
260.00	R									1.14	0.38
	V									2.66	1.71
270.00	R									1.23	0.41
	V									2.77	1.77
280.00	R									1.31	0.44
	V									2.87	1.84
290.00	R									1.40	0.47
	V									2.97	1.90
300.00	R									1.50	0.50
	V									3.07	1.97
310.00	R									1.59	0.53
	V									3.17	2.03
320.00	R									1.69	0.56
	V									3.28	2.10
330.00	R									1.79	0.60
	V									3.38	2.16
340.00	R									1.89	0.63
	V									3.48	2.23
350.00	R									2.00	0.67
	V									3.58	2.30
360.00	R										0.70
	V										2.36
370.00	R										0.74
	V										2.43
380.00	R										0.78
	V										2.49
390.00	R										0.86
	V										2.62
400.00	R										0.90
	V										2.69
410.00	R										0.94
	V										2.75
420.00	R										0.98
	V										2.82
430.00	R										1.02
	V										2.89
440.00	R										1.07
	V										2.95
450.00	R										1.11
	V										3.02
460.00	R										1.16
	V										3.08
470.00	R										1.20
	V										3.15
480.00	R										1.25
	V										3.21

Caudal	Diámetro exterior (mm)	75	90	110	125	160	200	250	315	400	500
(l/s)	Espesor (mm)	4.5	5.4	6.6	7.4	9.5	11.9	14.8	18.7	23.7	29.7
	Diámetro interior (mm)	66.0	79.2	96.8	110.2	141.0	176.2	220.4	277.6	352.6	440.6
490.00	Pérdida de carga "R" (mbar/m)										1.25
	Velocidad "V" (m/sg)										3.21
500.00	R										1.30
	V										3.28
510.00	R										1.35
	V										3.34
520.00	R										1.40
	V										3.41
530.00	R										1.45
	V										3.48
540.00	R										1.50
	V										3.54

Tabla 36.

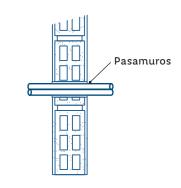
5.3. Coeficientes de pérdida de carga φ correspondientes a los accesorios

Denominación		Símbolo gráfico	φ
Tee en derivación		\rightarrow	1.30
Tee de afluencia reducida			0.90
Tee de derivación reducida		→	0.30
Tee de afluencia		<u></u>	0.60
Tee de afluencia central con entrada reducida		<u> </u>	3.00
Codo			1.13
Ampliación cónica	β = 10°		0.20
	β = 20°		0.45
	β = 30°		0.60
	β = 40°		0.75
Ampliación con descarga libre			1.00
Reducción	1 diámetro		0.40
	2 diámetros	1	0.50
	3 diámetros		0.60
	4 diámetros		0.70
	5 diámetros		0.80
	6 diámetros		0.90

Rotoplas

Denominación		Símbolo gráfico	φ
Válvula de asiento recto	DN 20		8.5
	DN 25		7.0
	DN 32		6.0
	DN 40 a DN 100		5.0
Válvula de asiento inclinado	DN 20		2.5
	DN 25 a DN 50		2.0
	DN 65		0.7
Válvula de bola	DN 20 a DN 25		1.5
	DN 32 a DN 50	T. 1	1.0
	DN 65 a DN 80	\bowtie	0.7
	hasta DN 100		0.6
Válvula de escuadra	DN 20 a DN 40		3.5
	DN 50 a DN 100		2.0
Válvula de compuerta	DN 20 a DN 25	,T.	0.5
	DN 32		0.3
Válvula de retención	DN 25 A DN 40		2.5
	DN 50	+	1.9
Válvula de esfera	DN 20		4.6
con retención	DN 25 a DN 50		3.6
Válvula de clapeta	DN 50	0	1.5
	DN 100		1.2
	DN 200		1.0
Válvula de retención	DN 20	P	15
antiariete	DN 25 a DN 50		13

Tabla 38.



6. Criterios de instalación

6.1. Protecciones

Protección contra la corrosión

Toda conducción exterior y al aire libre se protegerá igualmente. Cuando los tubos discurran por canales de suelo ha de garantizarse que estos son impermeables o bien que disponen de adecuada ventilación y drenaje.

Protección contra esfuerzos mecánicos

Cuando una tubería haya de atravesar cualquier parámento del edificio u otro tipo de elemento constructivo que pudiera transmitirle esfuerzos perjudiciales de tipo mecánico, lo hará dentro de una funda, también de sección circular, de mayor diámetro y suficientemente resistente. Cuando, en instalaciones vistas, el paso se produzca en sentido vertical, el pasatubos sobresaldrá al menos 3 centímetros por el lado en que pudieran producirse golpes ocasionales, con el fin de proteger al tubo. Igualmente, si se produce un cambio de sentido, éste sobresaldrá como mínimo una longitud igual al diámetro de la tubería más 1 centímetro.

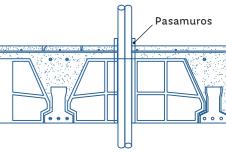


Figura 2.

Cuando la red de tuberías atraviese, en superficie o de forma empotrada, una junta de dilatación constructiva del edificio, se instalará un elemento o dispositivo dilatador, de forma que los posibles movimientos estructurales no le transmitan esfuerzos de tipo mecánico.

La suma de golpe de ariete y de presión de reposo no debe sobrepasar la sobrepresión de servicio admisible. La magnitud del golpe de ariete positivo en el funcionamiento de las válvulas y aparatos medido inmediatamente antes de estos, no debe sobrepasar 2 bar; el golpe de ariete negativo no debe descender por debajo del 50 % de la presión de servicio.

Protección contra ruidos

Como normas generales a adoptar:

- · Los huecos o patinillos, tanto horizontales como verticales, por donde discurran las conducciones estarán situados en zonas comunes.
- · A la salida de las bombas se instalarán conectores flexibles para atenuar la transmisión del ruido y las vibraciones a lo largo de la red de distribución. Dichos conectores serán adecuados al tipo de tubo y al lugar de su instalación.

6.2. Soportes

Se dispondrán soportes de manera que el peso de los tubos cargue sobre estos y nunca sobre lo propios tubos o sus uniones.

No podrán anclarse en ningún elemento de tipo estructural, salvo que en determinadas ocasiones no sea posible otra solución, para lo cual se adoptarán las medidas preventivas necesarias.

La longitud de empotramiento será tal que garantice una perfecta fijación de la red sin posibles desprendimientos.

De igual forma que para las grapas y abrazaderas se interpondrá un elemento elástico en los mismos casos, incluso cuando se trate de soportes que agrupan varios tubos.

Páginas | 50 · 51

Abrazaderas

Se recomienda la colocación de abrazaderas isofónicas.

La colocación de abrazaderas para la fijación de los tubos a los paramentos se hará de forma tal que los tubos queden perfectamente alineados con dichos paramentos, guarden las distancias exigidas y no transmitan ruidos y/o vibraciones al edificio.

El tipo de abrazadera será siempre de fácil montaje y desmontaje, así como aislante eléctrico.

Figura 3.

Distancia entre abrazaderas horizontales L (cm)

	Temperatura en °C								
Diámetro exterior (mm)	Tuboplus Clima Agua Helada Serie 3.2 SDR 7.4 (20°C) (50°C) (70°C)		Tuboplus Clima Agua Helada Serie 5 SDR 11 (20°C) (50°C) (70°C)			Tuboplus Clima Agua Helada Serie 8 SDR 17 (20°C) (50°C) (70°C)			
20	90	85	70	-	-	-	-	-	-
25	105	95	80	-	-	-	-	-	-
32	120	110	95	-	-	-	-	-	-
40	-	-	-	125	115	100	-	-	-
50	-	-	-	145	135	120	-	-	-
63	-	-	-	165	155	135	-	-	-
75	-	-	-	175	160	140	170	155	125
90	-	-	-	185	170	145	175	160	130
110	-	-	-	200	170	150	180	165	135
125	-	-	-	205	175	155	185	170	140
160	-	-	-	210	180	160	190	175	145
200	-	-	-	220	190	170	200	180	155
250	-	-	-	225	200	175	205	190	160
315	-	-	-	230	205	185	210	200	170
400	-	-	-	250	220	195	230	210	180
500	-	-	-	-	-	-	255	235	205

*Para instalaciones verticales las distancias expresadas pueden aumentarse en un 30 %.

Tabla 39.

6.3. Dilatación térmica

La principal precaución que debe observarse en el diseño de una conducción de tuberías Tuboplus para Aire Acondicionado aérea, es la asociada a la posible dilatación longitudinal a causa de las variaciones térmicas sufridas.

La variación en la longitud de una conducción sometida a una diferencia de temperatura viene dada por la expresión:

$$\Delta L = L \times \lambda \Delta t$$

ΔL= dilatación térmica total del tramo calculado (mm).

L = Longitud del tramo entre los puntos fijos.

 λ = Coeficiente de dilatación térmica del material (mm/m °C).

 Δt = Diferencia de temperatura (°C) entre temperatura máxima del fluido y temperatura ambiente.

Es un valor elevado, el cual implica que en instalaciones con importantes variaciones en la temperatura ambiente, sufrirá elongaciones considerables, la flexibilidad del material hace que sea capaz de absorberlas sin que aparezcan tensiones apreciables a lo largo de la conducción.

Por otro lado, los tubos Tuboplus Clima | Agua Helada (como casi todos los plásticos) tienen una buena capacidad de asilamiento térmico. En concreto, el coeficiente de conductividad térmica es 0.24 W/m·°C. Este buen aislamiento térmico reduce el riesgo de rotura frágil en caso de heladas.

Efectivamente, en caso de helarse el agua del interior de una canalización de PPR-CT RP, el aumento de volumen provocaría un incremento de diámetro, sin que llegara a romperse la conducción, recuperando después del deshielo el diámetro original.

Cuando la variación de temperatura sea positiva, la tubería se alargará, mientras que, si la variación de temperatura es negativa, la conducción se acortará.

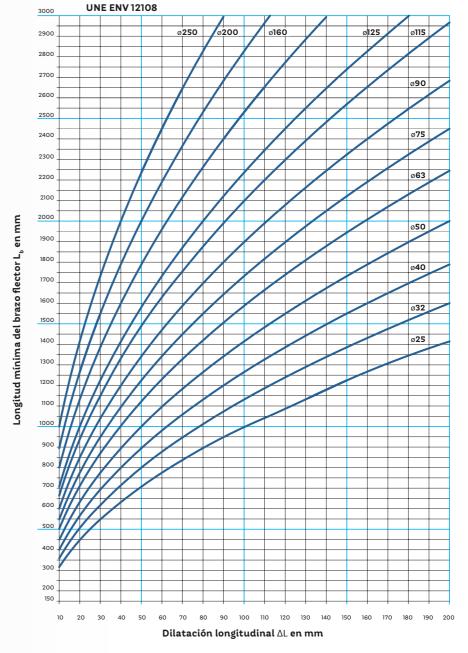
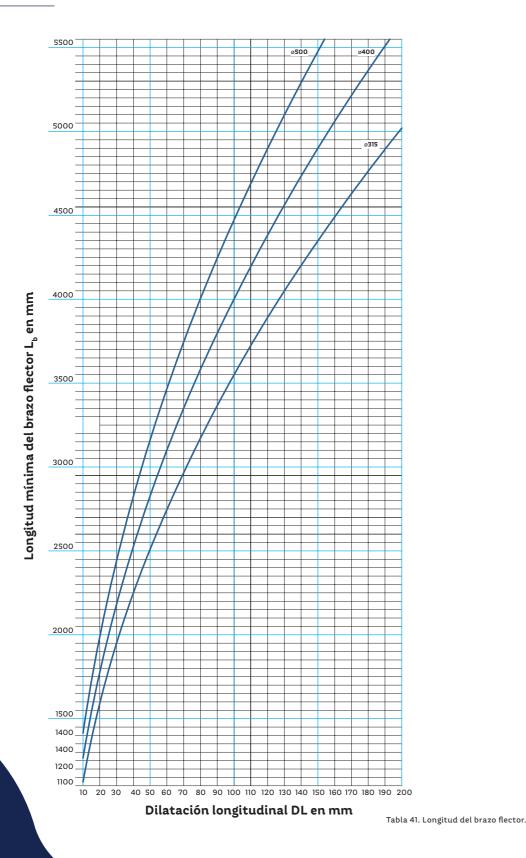



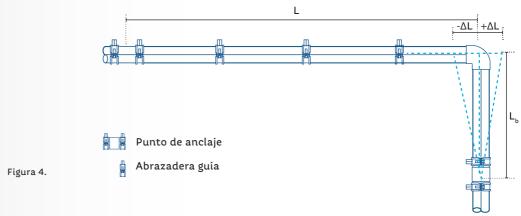
Tabla 40. Longitud del brazo flector.

Coeficiente de dilatación térmica Tuboplus Clima | Agua Helada: 0.04 mm/m · °C

Rotoplas

La principal precaución que debe observarse en el diseño, es la asociada a la posible dilatación longitudinal a causa de las variaciones térmicas sufridas.

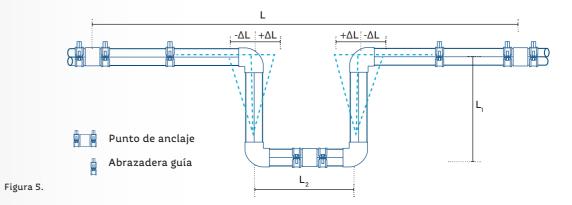
Sistemas de compensación de la dilatación


Para compensar las dilataciones producidas en los tubos Tuboplus Clima | Agua Helada por efecto de las variaciones de temperatura, pueden emplearse distintos métodos. Si el trazado de la conducción es completamente recto, será necesario insertar elementos capaces de absorber tales dilataciones, como por ejemplo, liras o compensadores de dilatación.

Sin embargo, la dilatación térmica puede ser absorbida en los cambios de dirección, sin necesidad de recurrir a los anteriores componentes. En concreto, son dos las posibles disposiciones más frecuentes para compensar la dilatación gracias a los quiebros del trazado: en "L" o en "U". Todos ellos se basan en disponer una serie de anclajes fijos y móviles de manera que permitan que la conducción se dilate por efecto de la temperatura lo suficiente para evitar que parezcan tensiones excesivas.

Las dimensiones que se deben respetar en cada caso, son las que se indican en los apartados siguientes:

Sistema de compensación en "L"


Consiste en disponer en la tubería un quiebro de 90°. La tubería debe quedar completamente anclada a dos puntos fijos y unida por una tercera abrazadera que permita los desplazamientos axiales (punto móvil), de manera que, por efecto de las diferencias de temperatura, pueda moverse libremente como esquemáticamente se representa en la Figura 3.

Sistema de compensación en "U"

La última posible solución para absorber las dilataciones térmicas ocurridas en un tubo de Tuboplus para Aire Acondicionado, sería disponer la conducción en forma de "U" mediante cuatro quiebros de 90°. En este caso, la tubería debe quedar completamente anclada a tres puntos fijos y unida por otras dos abrazaderas que permitan los desplazamientos axiales (puntos móviles) de manera que, por efecto de las diferencias de temperatura, pueda moverse libremente .

Conocida la ubicación de uno de los puntos fijos, la localización del otro punto fijo y de los puntos móviles, deben calcularse conforme las mismas expresiones que en el caso anterior.

Conducción

Figura 9.

Juntas de dilatación de los edificios

Un problema que es común a todas las tuberías sean plásticas o no, es el paso a través de las juntas de dilatación.

En el caso de las tuberías Tuboplus Clima | Agua Helada el método más simple para evitar estos problemas, es enfundar la tubería con un tubo corrugado del tipo eléctrico (unos 30 cm) para evitar que el tubo se estire solamente de un punto. Con ello se consigue que el tubo se estire a lo largo de la longitud del tubo corrugado, lo que elimina cualquier problema derivado del estiramiento ocasionado por las juntas de dilatación.

Cualquier edificación o material de construcción, debido a efectos sísmicos o térmicos, se ve sometido a contracciones o expansiones. Por lo que, para controlar estos movimientos, debemos ejecutar juntas que permitan el libre movimiento de los materiales con el único fin de evitar grietas o fisuras en los mismos.

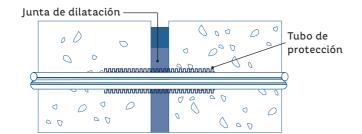


Figura 6.

En líneas generales las tuberías de montantes pueden instalarse rígidas, esto es, sin compensadores de dilatación. De este modo la dilatación queda absorbida entre los puntos fijos.

Instalaciones verticales con derivaciones en planta

Se ha de tener en cuenta que la derivación de la tubería tenga la elasticidad suficiente de acuerdo con la dilatación de la montante.

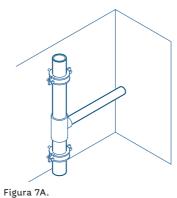
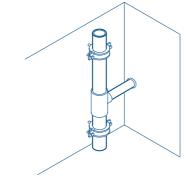

Esto puede lograrse como se indica en las figuras:

Figura 7A. La instalación es en el punto exacto, la montante es rígida y la longitud de la línea de bifurcación tiene una longitud correcta.

Figura 7B. Cuando la montante no es rígida y pueda sufrir una dilatación, se realiza un pasamuros con un diámetro de 1.5 veces el diámetro exterior de la derivación.

Figura 7C. Cuando la montante no es rígida y pueda sufrir una dilatación, realizar un brazo flector para absorber las posibles dilataciones mediante un tramo de tubería y un codo a 90 °.

La distancia de abrazaderas verticales se obtiene aumentando un 30 % las distancias indicadas en las tablas de abrazaderas horizontales.



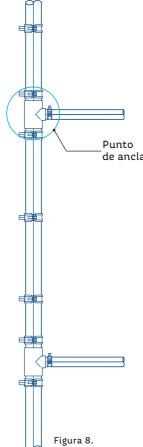
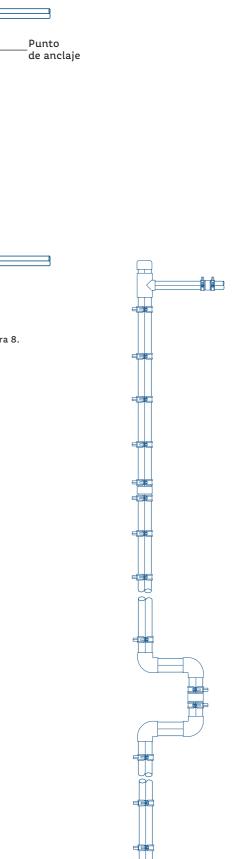

Figura 7B.

Figura 7C.

Instalación vertical que no permite dilatación longitudinal

Algunas veces y para situaciones especiales, se requiere la instalación de tuberías entre puntos de anclaje, en este caso la fuerza debida a la dilatación y contracción térmica, se transmite a través de los soportes a la estructura del edificio.

En la instalación de una tubería vertical lo primero a realizar es la inmovilización o fijación de las derivaciones, una vez realizado esto, con la instalación de puntos de anclaje, cercanos a las tes de derivación, debe verificarse que la distancia entre dichos puntos no supere los 3 m. Además, entre los puntos fijos para evitar el pandeo, deberán instalarse las abrazaderas deslizantes necesarias, según lo indicado en la tabla de distancia entre abrazaderas, que regula la separación entre abrazaderas según el diámetro de la tubería y la temperatura del fluido; dichas distancias se incrementan en un 30 % para instalaciones verticales.



Instalaciones verticales que permiten las variaciones de longitud

Puede utilizarse la colocación de los puntos de anclaje para dar una dirección y limitar la proporción de la dilatación térmica. Los puntos de anclaje pueden colocarse de forma que las variaciones de longitud por efecto de la temperatura puedan repartirse en diferentes direcciones.

Cuando los tramos de tubería son muy largos, sin derivaciones, podríamos sectorizar la instalación manteniendo los siguientes conceptos:

- · Punto fijo en el arranque de la montante.
- · Tramos intermedios con liras de dilatación.
- · Tramo superior con brazo dilatador.

7. Sistemas de unión

7.1. Introducción

Entre un tubo Tuboplus Clima | Agua Helada y un accesorio, no existe unión, existe termofusión. Esto significa que tubo y conexión se fusionan entre sí molecularmente, dando lugar a una tubería continua, que garantiza el más alto grado de seguridad en instalaciones de agua.

Termofusión: un proceso simple, seguro e inalterable

La termofusión, a diferencia de la unión con aporte, es inalterable en el tiempo. Además, se ve facilitada por el empleo de herramientas prácticas y precisas, que simplifican su ejecución y eliminan los problemas de obra derivados de errores humanos. Su sencillez y rapidez, se traduce en un importante ahorro de tiempo y costo de instalación.

El proceso de termofusión es muy sencillo. Durante unos pocos segundos, el tubo y la conexión son sometidos a una temperatura de 260 °C. Cumplido el tiempo de calentamiento, que varía según los distintos diámetros entre 6 y 40 segundos, tubo y conexión se unen por interposición de sus extremos, fusionándose, es decir, fundiéndose en una sola pieza.

Las uniones entre tubos y accesorios de los sistemas Tuboplus para Aire Acondicionado se realizan mediante unión de diferentes maneras:

- · Unión por termofusión con empleo de un Termofusor.
- · Unión a tope.

7.2. Unión por termofusión a socket

Tabla 42.

Ø Exterior de la tubería	Tiempo de calentamiento (segundos)					
(mm)	SDR 7.4 - SDR 11					
25	7					
32	8					
40	12					
50	18					
63	24					
75	30					
90	40					
110	50					
125	60					

Proceso de termofusión

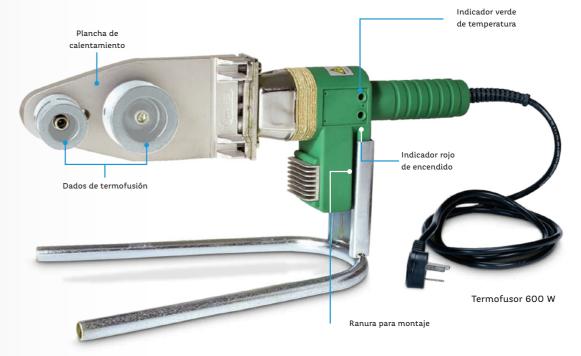
1. Limpia el Tubo, conexión y Dado, con un paño sin aromatizantes, colorantes o de material sintético.

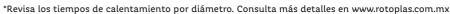
2. Marca profundidad de inserción en el Tubo acorde al diámetro (ver Tabla 4. página 26).

3. Verifica que la temperatura del Termofusor sea adecuada (LED verde) e inserta el Tubo y conexión hasta la profundidad de inserción.

4. Mantén las piezas en los Dados del Termofusor el tiempo indicado para el diámetro de la Tubería (ver Tabla, 3 página 26).

5. Remueve las piezas de los dados al mismo tiempo.


6. Inserta inmediatamente la Tubería en la conexión sin girarlos hasta que los labios se junten.



7. Una vez que los labios se junten tienes entre 4 y 10 segundos dependiendo del diámetro para hacer ajustes. No gires durante el ajuste o la inserción.

8. Alinea la Tubería y mantén el tiempo de enfriamiento y soporte (una cuarta parte del tiempo de enfriamiento).

7.3. Unión a tope

El procedimiento de unión a tope por termofusión "a tope" se fundamenta en la fusión de los componentes mediante la fusión de las superficies en contacto. Las condiciones de fusión se alcanzan mediante el aporte de calor a través de un elemento calefactor que se pone en contacto con las superficies a soldar.

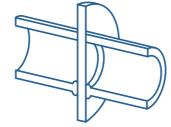


Figura 10

Normas

Para la realización de este tipo de unión se fundamentan los procesos de aplicación sobre la base de las normas emitidas por el instituto *Deutscher Verband für Schweißen und verwandte Verfahren (DVS)*, códigos ampliamente adoptados reconocidos en el campo de la unión de termoplásticos. En concreto, por lo que respecta a la unión a tope del polipropileno, la norma que aplica es DVS 2207-11 (PP).

Por último, la inspección de las uniones ejecutadas se realiza en base a las directrices de la norma DVS 202-1.

Maquinaria y utillaje

Este tipo de unión ha de realizarse mediante el uso de máquinas y utillaje conforme a los requisitos de la norma DVS 2208-1. Los componentes básicos de una máquina para unión de tubo son los siguientes:

- Una **bancada** sobre la que deslizan unos elementos de fijación (mordazas) de los elementos a soldar. Una de las mordazas es fija, mientras que la otra es deslizante.
- Un **elemento refrentador** formado por un disco doble, dotado de cuchillas que permitan que las superficies a soldar sean perfectamente planas y paralelas entre sí.
- Un **elemento calefactor** eléctrico que permite llevar las superficies a soldar a su temperatura de fusión, equipado con un termostato de control. Dicho elemento calefactor va recubierto en teflón para evitar toda adherencia.
- Un **sistema de accionamiento** de la mordaza móvil para ejercer presión entre los elementos a soldar, de funcionamiento mecánico o hidráulico.

Limpieza de superficies

Antes de calentar el elemento calefactor se limpiarán las superficies con alcohol metílico. Entre uniones se limpiarán las superficies interiores y exteriores (zona de influencia en la unión) de ambos tubos con alcohol metílico. Se limpiará también el elemento calefactor con un trapo seco.

Refrentado de superficies

Una vez limpios los extremos de los tubos se someterán a un refrentado. De esta manera, se asegurarán superficies de unión perfectamente lisas, así como el paralelismo entre ambas superficies.

Para asegurar el arranque de viruta necesario, el refrentado se realizará aplicando una ligera presión con el hidráulico hasta conseguir las superficies planas y paralelas.

Una vez refrentados, se unirán los extremos de los tubos para comprobar su paralelismo.

Es importante no tocar con las manos las superficies refrendadas para no contaminarlas con la grasa de las manos.

Separación máxima de los tubos prepardos para soldar

Pul. u. o.	
Diámetro exterior (mm)	Separación (mm)
£355	0.5
400<630	1.0
630<800	1.3
800<1000	1.5
>1000	2.0

Tabla 43.

Condiciones ambientales

Las condiciones ambientales pueden afectar a la eficiencia de la unión realizada. Los principales parámetros que pueden repercutir sobre el proceso de unión, son los siguientes:

- Una **temperatura ambiente** inferior a 5 °C repercute en un rápido enfriamiento del elemento calefactor, complicando la regulación de temperatura así como la uniformidad de la temperatura en propio elemento.
- · Una prolongada **exposición al sol** de las zonas a soldar (extremos de tubo/accesorio) puede provocar unas diferencias elevadas de temperatura en dichas zonas.
- · La acción del **viento** es doble. Por un lado, puede favorecer un enfriamiento del elemento calefactor. Por otro lado, puede conseguir que el proceso de enfriamiento no sea natural.

Preparación de la unión

Previo a la realización de la unión, es necesario preparar la maquinaria y las superficies a soldar para conseguir un resultado óptimo. Las acciones previas de preparación vienen definidas en los apartados siguientes.

P1 P1 P1 P1 t1 t2 t3 t4 t5 Tiempo

Proceso de unión

El proceso de unión a tope se desarrolla conforme a un ciclo de temperatura y presión representado en el gráfico adjunto.

Las distintas fases del ciclo son:

- · Formación del bordón temperatura con presión (t1).
- · Calentamiento temperatura sin presión (t2).
- · Extracción del elemento calefactor (t3).
- · Incremento de la presión (t4).
- · Enfriamiento presión sin temperatura (t5).

Parámetros de unión a tope según DVS 2207-11

Parametros de union a tope segun DV 5 2207-11							
Espesor tubo (mm)	Altura bordón Inicial*h (mm)	Tiempo de calentamiento t2 (segundos)	Tiempo para retirar placa t3 (segundos)	Tiempo para alcanzar la presión t4 (segundos)	Tiempo de enfriamiento t5 (segundos)		
hasta 4.5	0.5	135	5	6	6		
4.5-7	0.5	135-175	5-6	6-7	6-12		
7-12	1.0	175-245	6-7	7-11	12-20		
12-19	1.0	245-330	7-9	11-17	20-30		
19-26	1.5	330-400	9-11	17-22	30-40		
26-37	2.0	400-485	11-14	22-32	40-55		
37-50	2.5	485-560	14-17	32-43	55-70		

Tabla 44.

Montaje de tubos / accesorios sobre la máquina y alineación

La operativa a seguir previo a la propia realización de la unión viene definida por las siguientes etapas:

- · Elegir las mordazas adecuadas al diámetro del tubo.
- · Cortar los tubos a medida y amordazar los tubos.
- · Colocar rodillos en el suelo para apoyar el tubo y facilitar su arrastre (en caso de tramos de gran longitud).
- · Comprobar la alineación axial de los elementos sobre la máquina.
- · Comprobar la alineación entre las secciones de los tubos. Ésta no puede ser superior al 10 % del espesor del tubo (o accesorio).
- · Una vez amordazados los tubos, y en caso de tramos de gran longitud, se arrastrará lentamente el tramo de tubo en el suelo con el sistema hidráulico para determinar la fuerza de arrastre necesaria. La presión correspondiente se leerá en el manómetro.

Ajuste de la temperatura

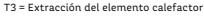
Previo a la preparación de las partes a soldar, la primera acción que se debe realizar es el ajuste de la temperatura del elemento calefactor. El objeto de esta primera acción es poder realizar otras operaciones durante el tiempo que tarda el elemento calefactor en alcanzar su temperatura de trabajo, que se suele ser relativamente largo.

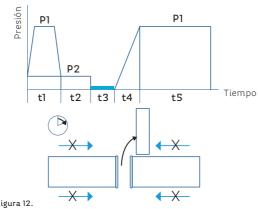
La temperatura de trabajo dependerá del material y espesor del tubo. El ajuste final con respecto al espesor se realizará más tarde. Para un primer ajuste se utilizarán los siguientes datos:

PP 210 °C ±10 °C

La temperatura se ajustará con el termostato, además, es aconsejable una comprobación con un termómetro de superficie.

La etapa de retirada del elemento calefactor debe realizarse lo más rápido posible. En caso contrario, la temperatura de la zona de unión disminuye demasiado, además de producirse una posible oxidación de las superficies calentadas.


El tiempo t3 no se refleja en las tablas, ya que se intentará hacer lo más corto posible.


Durante esta etapa se mantendrán las superficies unidas a presión, dejando que el enfriamiento se realice de manera natural. Junto con el recocido, esta fase es de gran importancia.

La presión a la que se mantienen los tubos será la reflejada en la tabla correspondiente más la presión de arrastre.

El tiempo **t4** será el necesario para que una vez retirado el elemento calefactor, los extremos del tubo se unan de manera que al contacto la velocidad de arrastre sea prácticamente nula.

El valor de t4 no vendrá reflejado en las tablas.

T4 = Incremento de la presión

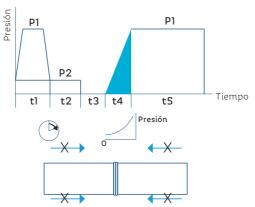


Figura 13.

En esta primera etapa se aplica presión y calor conjuntamente para asegurar una perfecta alineación entre ambos extremos, así como el calentamiento uniforme de las zonas de unión.

El tiempo **t1** será el necesario hasta obtener una rebaba de una cierta altura

Los valores de presión, altura de rebaba y temperatura, vienen dados en la tabla correspondiente a la máquina con la que se ejecuta la unión.

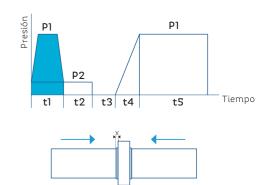
Durante esta etapa se mantendrían las superficies a soldar en contacto con el elemento calefactor, sin aplicación de presión. Debe mantenerse únicamente la presión de arrastre, para que los tubos no tiendan a separarse.

El tiempo de calentamiento t2 depende del espesor del tubo.

El valor de la temperatura se refleja en la tabla correspondiente a la máquina utilizada.

El tiempo de enfriamiento **t5** depende del espesor del tubo, en este punto se debe de mantener la presión del tubo uno contra otro.

Es el proceso más largo de la unión.


El valor de la temperatura se refleja en la tabla correspondiente.

Inspección visual

Una vez ejecutada la unión, se debe proceder a una inspección visual de la misma.

El único ensayo no destructivo posible relacionado con los materiales soldados mediante este procedimiento es la inspección visual. Dicho ensayo es suficiente siempre y cuando la unión haya sido ejecutada por un soldador homologando conforme al código DVS 2212-1.

T1 = Formación del bordón

T2 = Calentamiento

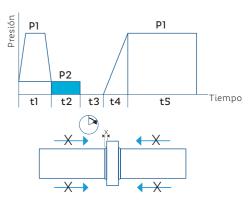


Figura 15.

TS = Enfriamiento P1 P2 t1 t2 t3 t4 t5 Tiempo

Figura 17.

Figura 16.

Rotoplas

En la siguiente tabla se detallan los tipos de defectos más comunes en la realización de unión a tope, así como las causas y la aceptación o no (criterios de evaluación) de dichos defectos.

Estos defectos vienen recogidos en el código DVS 2212-1.

			Evaluación					
	Defecto	Descripción	Nivel I	Nivel II	Nivel III			
1		Grietas en sentido transversal o paralelo a la unión. Pueden aparecer en: - La unión. - El material base. - Zona afectada por el calentamiento.	No permitido	No permitido	No permitido			
2		Muescas locales o continuadas paralelas a la unión, con raíz en el material de base. Causadas por: - Presión de ajuste insuficiente. - Tiempo de recocido muy corto. - Tiempo de enfriado muy corto.	No permitido	No permitido	No permitido			
3	Ţ †	Muescas cercanas a la unión, en sentido transversal o paralelo a la unión. Causadas por: - Mordazas. - Transporte incorrecto. - Preparación superficial defectuosa.	Permitido solo Ds ≤ 0.5 mm	Permitido solo Ds ≤ 1.0 mm	Permitido solo Ds ≤ 2.0 mm			
4	1	Las superficies a soldar desplazadas una respecto de la otra.	Permitido solo si e ≤ 2 mm	Permitido solo si e ≤ 4 mm	Permitido solo si e ≤ 5 mm			
5		Desviación angular de los tubos soldados. Causada por: - Fallo de la máquina. - Fallo en el montaje de los tubos.	Permitido solo e ≤1 mm	Permitido solo e ≤ 2 mm	Permitido solo e ≤ 4 mm			
6		Bordón de unión afilado sobre parte o la totalidad de la unión. Causado por: - Parámetros de unión incorrectos. (presión de ajuste excesiva)	No permitido	No permitido	No permitido			
7	→	Bordón de unión muy estrecho o muy ancho, en parte o la totalidad de la unión. Causado por: - Tiempo recocido incorrecto. - Temperatura de espejo incorrecta. - Presión de ajuste incorrecta.	Los valores permitidos se definen en la tabla adjunta	Los valores permitidos se definen en la tabla adjunta	Los valores permitidos se definen en la tabla adjunta			
8	1	Unión no uniforme con bordón de unión irregular en parte o la totalidad de la unión. Causado por: - Preparación superficial defectuosa. - Máquina defectuosa.	Permitido solo si b1 ≥ 0.7 b2	Permitido solo si b1 ≥ 0.6 b2	Permitido solo si b1 ≥ 0.5 b2			
9		Fusión incompleta en parte o la totalidad de la unión. Causado por: - Superficies contaminadas u oxidadas. - Tiempo de cambio de posición muy largo. - Temperatura de espejo muy baja. - Temperatura de espejo muy alta.	No permitido	No permitido	No permitido			
10		Hueco entre superficies. Causado por: - Presión de enfriamiento insuficiente. - Tiempo de enfriamiento insuficiente.	No permitido	No permitido	No permitido			
11	Ţ <u></u>	Poros o inclusiones aislados, dispersos o localmente concentrados. Causados por: - Formación de vapor durante la unión. - Espejo contaminado.	Permitido poros aislados solo si Ds ≤ 0.5 s	Permitido poros aislados solo si Ds ≤ 0.10 s	Permitido poros aislados solo si Ds ≤ 0.15 s			

En este gráfico se muestra la anchura de bordón admitida después de la unión, en función del espesor de la tubería (correspondiente al punto 7).

Como se puede apreciar, esta anchura de bordón deberá permanecer dentro del rango definido para cada espesor. Dicho rango viene determinado entre dos rectas (valores límite), en función del nivel de inspección requerido.

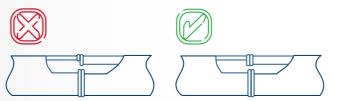
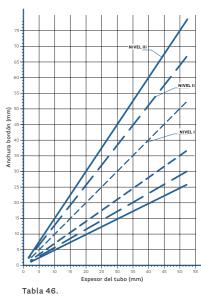



Figura 18.

Los tubos de materiales y espesores de pared similares pueden ser unidos por unión a tope o electrofusión. Los tubos de materiales similares pero de diferentes espesores de pared solo pueden ser unidos a través de la electrofusión.

7.4. Empleo de monturas de derivación

Las monturas fusionan tanto en la superficie exterior de la tubería como en su espesor de pared, consiguiendo un sistema de unión de gran seguridad.

Paso 1

Hacer una perforación en el tubo con la broca para derivaciones.

Paso 2

Limpiar, quitar las rebabas y biselar.

Paso 3

Calentar el agujero y la montura de derivación simultáneamente (260 °C).

Paso 4

Después de calentar, retirar la herramienta de unión y la montura de derivación e introducirlo de inmediato en el agujero. El accesorio debe de ser presionado en el tubo durante unos 15 segundos. Una vez transcurrido el tiempo de enfriamiento se puede probar la unión realizada.

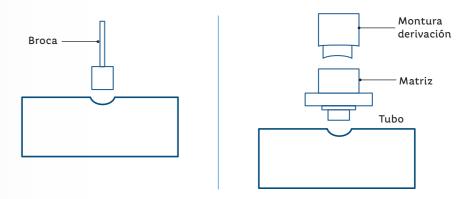
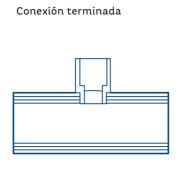



Figura 19.

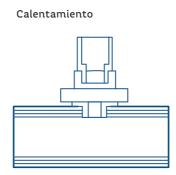
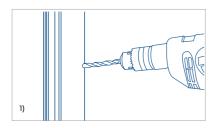
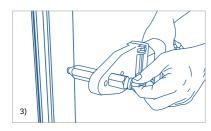
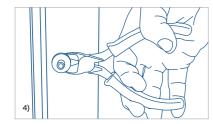



Figura 20.

7.6. Empleo de tapones de reparación

Reparación de tuberías


Según el daño sufrido por una tubería Tuboplus para Aire Acondicionado, corresponde la forma de reparación. Reparación de perforaciones en una de las paredes del Tubo.


Descubre la perforación del Tubo con un boquete lo más pequeño posible. Coloca y calienta los Dados de reparación en el Termofusor por 3 minutos. Rectifica la perforación con una broca de 8 mm.

Toma un Tapón de reparación y marca en éste la medida de espesor del Tubo (ver espesor del Tubo, página 70).

Introduce el extremo macho del Dado de reparación dentro del agujero del Tubo y al mismo tiempo, introduce el Tapón dentro del dado hembra hasta la marca. Calienta por lo menos 5 segundos.

Introduce inmediatamente el Tapón en el Tubo hasta la marca. Deja enfriar al menos 2 minutos y corta el excedente.

8. Pruebas de presión

8.1. Preparación y limpieza de las redes

Todas las redes de circulación de fluidos portadores, deben ser probadas hidrostáticamente a fin de asegurar su estanquidad antes de quedar ocultas por obras de albañilería, material de relleno o por el material aislante.

El procedimiento a seguir para las pruebas de estanquidad hidráulica, en función del tipo de fluido transportado y con el fin de detectar fallos de continuidad en las tuberías de circulación de fluidos portadores, comprenderá las fases que se relacionan a continuación:

Preparación y limpieza de redes de tuberías

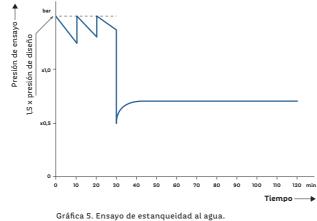
- 1. Antes de realizar la prueba de estanquidad y de efectuar el llenado definitivo, las redes de tuberías de agua deben ser limpiadas internamente para eliminar los residuos procedentes del montaje.
- 2. Las pruebas de estanquidad requerirán el cierre de los terminales abiertos. Deberá comprobarse que los aparatos y accesorios que queden incluidos en la sección de la red que se pretende probar puedan soportar la presión a la que se les va a someter. De no ser así, tales aparatos y accesorios deben quedar excluidos, cerrando válvulas o sustituyéndolos por tapones.
- 3. Para ello, una vez completada la instalación, la limpieza podrá efectuarse llenándola y vaciándola el número de veces que sea necesario, con agua o con una solución acuosa de un producto detergente, con dispersantes compatibles con los materiales empleados en el circuito, cuya concentración será establecida por el fabricante.
- 4. El uso de productos detergentes no está permitido para redes de tuberías destinadas a la distribución de agua para usos sanitarios.
- 5. Tras el llenado, se pondrán en funcionamiento las bombas y se dejará circular el agua durante el tiempo que indique el fabricante del compuesto dispersante. Posteriormente, se vaciará totalmente la red y se enjuagará con agua procedente del dispositivo de alimentación.
- 6. En el caso de redes cerradas, destinadas a la circulación de fluidos con temperatura de funcionamiento menor que 100 °C, se medirá el pH del agua del circuito. Si el pH resultara menor que 7.5 se repetirá la operación de limpieza y enjuague tantas veces como sea necesario.

A continuación se pondrá en funcionamiento la instalación con sus aparatos de tratamiento.

La instalación del sistema no utiliza aditivos tales como pegamentos, fundentes, etc. La unión se realiza exclusivamente por termofusión. El sistema mantiene la pureza de su material también en la unión, por este motivo es totalmente suficiente el simple lavado con agua.

Páginas | 66 · 67

8.2. Ensayos y puesta en servicio

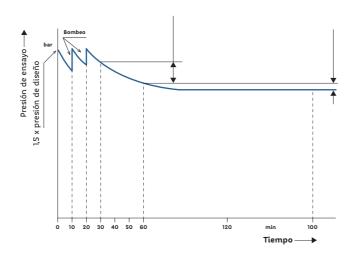

El sistema de canalización debería llenarse lentamente de agua potable para asegurar la eliminación completa de las bolsas de aire para evitar los golpes de presión.

En los procedimientos de ensayo siguientes se describen diferentes ensayos de presión hidrostática para los sistemas de canalización que vayan a ser instalados y de puesta en servicio de dichos sistemas.

Procedimiento de ensayo A

El procedimiento A de aplicación de la presión de ensayo hidrostática comprende las siguientes etapas:

- a) Apertura del sistema de purga.
- b) Purga del sistema con agua para expulsar todo el aire que pueda evacuarse por este medio. Parada del caudal y cierre del sistema de purga.
- c) Aplicación de la presión hidrostática de ensayo seleccionada, igual a 1.5 veces la presión de diseño, por bombeo de acuerdo con la Gráfica 5, durante los primeros 30 min, durante este tiempo debería realizarse la inspección para detectar cualquier fuga sobre el sistema a ensayar considerado.



- Prodecimiento de ensayo A.
- d) En caso de fuga de agua importante, reducción de la presión a 0.5 veces la presión de diseño de acuerdo con la Gráfica 5.
- e) Cierre del grifo de purga. Si se estabiliza a una presión constante, superior a 0.5 veces la presión de diseño, es indicativo de que el sistema de canalización es bueno. Supervisión de la evolución durante 90 min. Realización de un control visual para localizar las posibles fugas. Si durante este periodo la presión tiene una tendencia a bajar, esto en indicativo de que existe una fuga en el sistema.
- f) El resultado del ensayo debería registrarse.

Procedimiento de ensayo B

El procedimiento B de aplicación de la presión de ensayo hidrostática comprende las siguientes etapas:

- a) Apertura del sistema de purga.
- b) Purga del sistema con agua para expulsar todo el aire que pueda evacuarse por este medio. Parada del caudal y cierre del sistema de purga.

Gráfica 6. Ensayo de estanqueidad al agua. Prodecimiento de ensayo B.

- c) Aplicación de la presión hidrostática de ensayo seleccionada, igual a 1.5 veces la presión de diseño, por bombeo de acuerdo con la Figura 13. durante los primeros 30 min.
- d) Lectura de la presión al final de los 30 min.
- e) Lectura de la presión después de otros 30 min, y realización de un control visual de la estanquidad. Si la presión se encuentra por debajo de 0.6 bar, se deduce que el sistema no presenta fuga y se continua el ensayo sin bombear nuevamente.
- f) Realización del control visual de la estanquidad y si, durante las siguientes 2 h, la caída de presión es superior a 0.2 bar, esto es indicativo de que existe una fuga dentro del sistema.
- g) El resultado del ensayo debería registrarse.

El procedimiento de ensayo B puede reducirse solamente a las etapas de la a) a la e) y la g) en las secciones pequeñas de una instalación.

9. Transporte, manipulado y acopio

9.1. Transporte

Figura 21.

Las operaciones de transporte de los tubos deben hacerse, en su caso, conforme a las vigentes normas de tráfico, siendo en ocasiones un condicionante para las longitudes de fabricación.

Como norma general el proceso de carga, transporte y posterior descarga, deberá realizarse cuidando que los tubos y accesorios no sufran deterioro alguno durante el trayecto, para lo que se deberán adoptar las siguientes precauciones:

Los tubos tendrán que descansar por completo en la superficie de apoyo, para lo que los vehículos de transporte tendrán el suelo plano y exento de cualquier elemento suelto, protuberancia o borde rígido que pudiera dañarlos.

En aquellos casos en que la plataforma del vehículo no sea completamente plana, se colocará algún elemento que compense los salientes, bien listones de madera a una separación de 0.40 m, o bien una capa de arena o viruta.

Para asegurar la carga se usarán bandas o cintas evitando siempre el uso de cadenas o alambres en contacto con los tubos y un apriete excesivo que pueda deformarlos. Es conveniente la sujeción con eslingas de cinta ancha.

Aquellos rollos de gran diámetro que, por sus dimensiones, la plataforma del vehículo no admita en posición horizontal, se colocarán verticalmente, teniendo la precaución de que permanezcan el menor tiempo posible en esta posición y evitando la colocación de cualquier carga adicional sobre los mismos.

Si el transporte incluye tubos de distinto diámetro, es preciso colocarlos en sentido decreciente de los diámetros a partir del fondo.

Figura 22.

Páginas | 68 · 69

Rotoplas

Los tubos de pequeño diámetro se transportarán paletizados. Se evitará que los tubos sobresalgan de la caja del camión quedando tramos en voladizo.

9.2. Manipulado

Las operaciones de carga y descarga deben realizarse de tal manera que los distintos elementos no se golpeen entre sí o contra el suelo. La descarga debe hacerse, a ser posible, cerca del lugar donde deban ser colocados, evitando que el tubo quede apoyado sobre puntos aislados.

La descarga de los tubos y accesorios debe realizarse ordenadamente y podrá hacerse fácilmente con la mano o con equipos. Se evitará arrojarlos desde el camión al suelo o golpearlos violentamente; así mismo, se evitarán arrastres por el suelo o contactos con objetos de filo cortante.

La manipulación debe llevarse a cabo con la mano, tenazas de suspensión o eslingas de nailon de 50 mm de ancho. Al usar eslingas, se recomiendan dos puntos de apoyo.

Si debido al manejo o almacenaje defectuosos, un tubo resultara dañado o con dobleces, la porción afectada debe ser suprimida completamente. Se admitirán ralladuras que no superen el 10 % del espesor.

Las bajas temperaturas por debajo de 4 °C determinarán precauciones especiales en la manipulación de los tubos.

9.3. Acopio

A la llegada de los tubos a obra y previa a la recepción, se comprobará que la carga no haya sufrido ningún tipo de deterioro por afloje de amarres, pérdida de protecciones, etc., retirándose cualquier material que plantee dudas sobre su posible uso, controlando su ubicación para evitar confusiones posteriores.

La descarga de los tubos debe hacerse de forma ordenada.

El acopio de los tubos se realizará preferentemente en locales cubiertos y sobre superficies planas y limpias, protegiéndolos de la luz directa del sol y de las bajas temperaturas.

Al igual que en el proceso de transporte, en el acopio, hay que adoptar como norma general la manipulación cuidadosa que evite caídas del material.

Cuidados a tener presente durante el acopio

En cualquier caso, se evitará el contacto con combustibles, disolventes, adhesivos, pinturas agresivas o con conducciones de vapor o agua caliente, asegurándose de que la temperatura externa no sea muy elevada, procurando una correcta aireación en previsión de la deformación producida por el calor.

Figura 24

Figura 25.

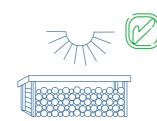


Figura 27.

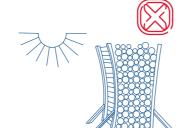


Figura 28.

10. Calidad

10.1. Control de calidad

La fabricación de tuberías Tuboplus Clima | Agua Helada es un proceso industrial altamente tecnificado y durante el cual se realizan numerosos ensayos de control de calidad encaminados a verificar no solo el aseguramiento de la calidad en la fabricación, si no, además a verificar que las características técnicas tanto de la materia prima como de la tubería una vez fabricadas, sean conformes a las especificaciones recogidas en la normativa correspondiente.

Debemos distinguir entre:

- · Gestión de calidad en la fabricación.
- · Aseguramiento de la calidad del producto.

Sistema de gestión de calidad en la fabricación ISO 9001

El sistema de gestión de la calidad puede seguir los principios establecidos en la norma ISO 9001. Este sistema consiste en inspecciones periódicas, procedimientos y ensayos o evaluaciones de control tanto a la materia prima como a los equipos, componentes, procesos de producción y producto.

Todos los elementos, requisitos y provisiones adoptados por el fabricante, están de manera sistemática documentados por escrito en políticas y procedimientos de calidad. El control de producción ofrece, por tanto, técnicas de operatividad y todas las medidas que permiten el mantenimiento y el control de la conformidad de los componentes de sus especificaciones técnicas. Su implementación implica controles y ensayos a la materia prima y a otros componentes, a los procesos, equipos de fabricación de productos finales.

La implementación de un sistema de gestión de calidad en fábrica, requiere acciones entre otras sobre:

- · Personal (formación, habilidades, experiencia...).
- · Equipos de peso, medida, de ensayos, de fabricación (calibración, verificación...).
- · Proceso de diseño.
- · Materia prima de los componentes (verificación de las especificaciones).
- · Control en el proceso (producción bajo condiciones controladas).
- · Trazabilidad y marcado (identificación del producto en lotes).
- · Productos no conformes (tratamiento de las no conformidades).
- · Acciones correctivas.
- · Manejo, almacenaje y embalaje.

Existen organismos que certifican el cumplimiento con las indicaciones de la norma ISO 9001 y, por tanto, la implementación de un sistema de aseguramiento de la calidad.

Con esta certificación se da a entender que el sistema de gestión de la calidad de la empresa a la que se concede, es objeto de las auditorías y controles establecidos en el sistema de certificación y que ha obtenido la adecuada confianza en su conformidad con la Norma ISO 9001.

Páginas | 70 · 71

10.2. Normas

Normativa dimensional y de calidad

- **EN ISO 15874:** sistemas de canalización en materiales plásticos para instalaciones de agua caliente y fría. Polipropileno (PP). Parte 1: Generalidades.
- · **DIN 8077:** polypropylene (PP) pipes PP-H, PP-B, PP-R, PP-RCT Dimensions.
- **DIN 8078:** polypropylene (PP) pipes PP-H, PP-B, PP-R, PP-RCT General quality requirements and testing.
- · NTC 4897-2: sistemas de tuberías plásticas para Instalaciones de agua caliente y fría. Polipropileno (PP).
- · RP 01.00: reglamento particular de la marca AENOR para materiales plásticos. Requisitos comunes.
- RP 01.78: reglamento particular del certificado de conformidad AENOR para sistemas de canalización en Polipropileno Random con estructura cristalina modificada (PP-RCT) y fibra de vidrio (FV) para instalaciones de agua caliente y fría en el interior de la estructura de los edificios.

Ensavos realizados

- EN ISO 1043-1: plásticos. Símbolos y abreviaturas. Parte 1: polímeros de base y sus características especiales.
- ISO 9080: sistemas de canalización y conducción en materiales plásticos.

 Determinación de la resistencia hidrostática a largo plazo de materiales termoplásticos en forma de tuberías mediante extrapolación.
- · EN ISO 7686: tubos y accesorios de materiales plásticos. Determinación de la opacidad (ISO 7686:2005).
- Estudio de evolución de la carga microbiana en tuberías aditivadas con bactericidas.
 AOM Laboratorios.

10.3. Certificados Certificados del fabricante

Certificados del producto

Sistema de Certificación LEED®

El sistema de certificación LEED® fue creado por el U.S. Green Building Council (USGBC) como una forma de definir y medir la sustentabilidad de los edificios verdes o de alto rendimiento y sustentabilidad. Su primera versión fue lanzada en 1998 con sus preceptos formados por un comité de arquitectos, agentes de bienes raíces, dueños de edificios, abogados, ambientalistas y representantes de diferentes industrias. Los proyectos que desean ser evaluados LEED® se registran y interactúan con el Green Building Certification Institute (GBCI) de esta forma la certificación ofrece una validación imparcial sobre las características sustentables del proyecto.

Conforme LEED® creció y evolucionó se creo un sistema de evaluación especial para cada especialidad de la construcción, por ejemplo: LEED® para Construcción Nueva, LEED® para Escuelas, LEED® para Desarrollos de Vivienda, LEED® para Comercio, LEED® para Centros de Salud, LEED® para Hogares, LEED para Interiores y LEED para Operación y Mantenimiento de Edificios Existentes. A la fecha hay más de 4.15 millones de m² de espacio de construcción con certificación LEED®.

LEED® funciona a través de un sistema en el cual los proyectos de construcción obtienen puntos por satisfacer criterios específicos de construcción sustentable. Para estos criterios existen siete categorías donde los proyectos deben satisfacer determinados prerrequisitos (obligatorios) y créditos (opcionales) para ganar puntos.

Las categorías ambientales son Sitio Sustentable (SS), Eficiencia en el Uso de Agua (WE), Energía y Atmósfera (EA), Materiales y Recursos (MR) y Calidad Ambiental Interior (IEQ). Una categoría adicional, Innovación en la Operación (IO) atiende las medidas de operación de alto rendimiento que no están cubiertas dentro de las cinco categorías ambientales mencionadas y la categoría de Prioridad Regional (RP) atiende problemas de la localidad del proyecto.

El proyecto obtiene un nivel de certificación en base a la cantidad de puntos que gana al cumplir con los créditos de las diferentes categorías. Las puntuaciones y los niveles de certificación son los siguientes:

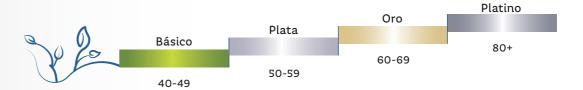


Figura 28. Niveles de Certificación LEED®

Nota: la certificación LEED* o normativa que para su obtención se requiere cumplir no es una alternativa a no cumplir las normativas federales, estatales o locales de donde se encuentre el proyecto.

El cumplimiento de normatividad para la obtención de la certificación es adicional al cumplimiento de la normatividad mexicana.

Contribución directa con LEED®

Siempre y cuando se alcance en el proyecto el número de productos C2C en el total del proyecto, de hasta 2 puntos a través del apartado *Materials & Resources:*

+1 punto en Material Ingredient Reporting:

- Al menos 20 productos diferentes instalados permanentemente de al menos cinco fabricantes diferentes que usen cualquiera de los siguientes programas para demostrar el inventario químico del producto a al menos 0.1% (1000 ppm).
- Al menos 20 productos permanentemente instalados deben ser certificados C2C a nivel Bronce o superior.

+1 punto en Material Ingredient Optimization:

- Al menos el 25 % (en coste) de los productos permanentemente instalados deben ser certificados
 C2C y superior a nivel Bronce.
- Aquellos que son Oro o Platino en Material Health (nuestro caso), son valorados en un 150 % de su costo.

Más facilidades para el proyecto que alcance el 25 % global. Generalmente, el importe de todo el sistema de tuberías es relevante en un proyecto.

Conducción

11. Consideraciones importantes en las instalaciones 11.1. Control de calidad

En las instalaciones realizadas con el sistema Tuboplus Clima | Agua Helada hay que prestar especial atención a los siguientes parámetros:

Presión

No se debe de sobrepasar las presiones descritas en el Capítulo 2 del catálogo técnico de Tuboplus Clima | Agua Helada, que están indicadas en función de la serie del tubo, la temperatura y la durabilidad. En la Tabla 3 recordamos los valores más relevantes.

Velocidad

Las velocidades del agua a través de una tubería deben ser estudiadas con detenimiento. Es necesario establecer un criterio que fije un valor máximo y otro mínimo para la velocidad del agua en las tuberías, ya que puede ser perjudicial tanto una velocidad demasiado alta como una velocidad demasiado baja.

Un exceso de velocidad puede:

- · Originar golpes de ariete, cuyo valor de sobrepresión puede provocar roturas.
- · Producir excesivas pérdidas de carga.
- · Favorecer la corrosión.
- · Producir ruidos.

Una velocidad demasiado baja:

- · Propicia la formación de depósitos de sólidos, provocando obstrucciones.
- · Implica un sobredimensionado de la instalación, encareciéndola de forma innecesaria.

El Código Técnico de la Edificación establece el siguiente criterio:

La elección de una velocidad de cálculo está comprendida dentro de los intervalos siguientes:

- i) Tuberías metálicas: entre 0.50 y 2.00 m/s
- ii) Tuberías termoplásticas y multicapas: entre 0.50 y 3.50 m/s

Como se ve, las velocidades para las tuberías plásticas son muy superiores a las de las tuberías metálicas, motivo por el cual en instalaciones que se combinen ambos sistemas no deben superar las velocidad más restrictiva, es decir 2.00 m/s.

Temperatura

Las instalaciones de A.C.S. habitualmente funcionan entre 45 y 60 °C y no deben exceder los 70 °C. La temperatura en instalaciones de A.C.S. por encima de los 70 °C reducirá significativamente la duración de la tubería de polipropileno.

La desinfección de las instalaciones requerirá la realización de uno u otro procedimiento de desinfección, siguiendo estrictamente el procedimiento para cada una de ellas, y en ningún caso se realizará una combinación de ambos métodos.

Importante

Tratamiento inadecuado. La ejecución del tratamiento de desinfección sin seguir correctamente los parámetros (concentración cloro, temperatura, tiempo) o bien, la elección de un tratamiento inadecuado, pueden provocar la degradación oxidativa de los distintos elementos del sistema.

No se recomienda el uso de dióxido de cloro (CIO₂) como desinfectante

11.2. Desinfección química y térmica

Desinfección química y térmica

Una desinfección no será efectiva si no va acompañada de una limpieza exhaustiva. Se deben utilizar sistemas de tratamiento y productos aptos para el agua de consumo humano.

Los métodos de limpieza y desinfección son:

a) Desinfección térmica

La desinfección térmica es compatible con los sistemas de tuberías Tuboplus Clima | Agua Helada elevando la temperatura del agua hasta 70 °C.

Los límites máximos admisibles de uso con respecto a la temperatura y presión de servicio se deben de respetar y están indicados en el Capítulo 2.

b) Desinfección química

En caso de desinfección no continua, está permitido aplicar al sistema Tuboplus para Aire Acondicionado, dos veces al año un contenido de cloro libre de 50 mg/l durante un máximo de 12 horas, siempre que la temperatura del agua no supere los 30 °C y el PH esté comprendido entre 7 y 8.

Los procesos de desinfección, especialmente con aguas cloradas pueden tener una influencia directa sobre la vida útil de las tuberías.

En instalaciones donde no sea posible controlar los niveles de cloro se recomienda no sobrepasar los 70 °C de temperatura.

La desinfección continuada

Este tipo de tratamiento conduce a un contacto a largo plazo entre los materiales y el agua desinfectada. Las reacciones químicas que se pueden desarrollar involucran a todos los materiales del sistema de tuberías, es decir, metales, cauchos y plásticos. Para ello, todos los materiales deben de ser cuidadosamente seleccionados.

En determinadas condiciones, la presencia de cloro en alta concentración combinada con agua que tiene un PH bajo, es decir <6.5. y bajo una temperatura continua de 60°C o más, puede afectar a largo plazo las condiciones del PP. Estas recomendaciones son de aplicación especialmente en edificios con circuitos de recirculación para proporcionar agua instantánea.

18. Catálogo Aire Acondicionado

Tubería

Car	acte	rística	s física	19

Material:	PP-R CT RP + FV (con refuerzo de fibras)
Estructura:	Tubería multicapa
Color:	Azul - Ral 5017 - Pantone 301
Series:	Serie 3.2/SDR 7.4 Serie 5/SDR 11
Normas:	UNE-EN ISO 21003 ASTM F2389 *10 RP 01.78 DIN 8077 DIN 8078
Aplicaciones:	 Sistemas de distribución de agua sanitaria, calefacción y climatización Instalaciones de fluidos a altas y bajas temperaturas Redes de tipo civil e industrial Instalaciones de sistemas de aire comprimido Instalaciones de agua refrigerada
Características diferenciadoras:	 Resistente a los procesos de desinfección Protección antimicrobiana Microfibras anti-dilatación Protección uv

Tubos Aire Acondicionado

Sistema de tuberías para instalaciones de sistemas de distribución hidrosanitarias de agua fría, ACS, calefacción y climatización.

Código	SDR	Serie	d	e	Longitud (m)
200987*	7.4	3.2	20	2.8	4
200988	7.4	3.2	25	3.5	4
200989	7.4	3.2	32	4.4	4
200990	11	5	40	3.7	4
200991	11	5	50	4.6	4
200992	11	5	63	5.8	4
200993	11	5	75	6.8	4
200994	11	5	90	8.2	4
200995	11	5	110	10	4
200999	11	5	125	11.4	5.8
200996*	11	5	160	14.6	5.8
200997	11	5	200	18.2	5.8
280821	11	5	250	22.7	5.8
200998*	11	5	315	28.7	5.8
280818	11	5	355	32.2	5.8

*Producto sobre pedido.

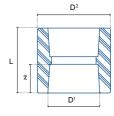
Unidades: mm

Descripción de la leyenda

Segmento 1	Segmento 2	Segmento 3	Segmento 4	Segmento 5	Segmento 6
Rotoplas Tuboplus Clima Agu Tuboplus Helada (PPR-CR RP+FV		20 mm x 2.8 mm	SM-A	PP-RCT RP/ PP-RCT+FV/ PP-RCT	(Clase 1/20 bar, Clase 2/10 bar)(20°C/31.7 bar/50 años) (60°C/17.7 bar/50 años). (Clase 4/10 bar, Clase 5/8 bar)(70°C/14.9 bar/50años)(80°C/12.7bar/25años)
Nombre de marca	Familia de marca	Diámetro nominal / Ø exterior	Serie métrica Clase A	Material	Clase y SDR

Segmento 7	Segmento 8	Segmento 9	Segmento 10	Segmento 11	Segmento 12
Protección UV /	LINE EN	Fecha		AENOR	EPD
Plásticos AB B-s1 dO. Opaco	UNE EN ISO 15874	Hora Maquina	UPC Hecho en España	001 / 000646 R.P 01 78	(delacaracion ambiental del producto)
Datos manufactura aditivos	Norma aplicable en México	Datos de producción	Código de barras. Origen	Organismo certificador y certificado	Declaración EPD

Accesorios

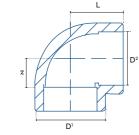

Accesorios cuya unión con el tubo se realiza por fusión conjunta de la parte exterior del tubo con la parte interior del accesorio, por medio de un calentamiento inducido mediante placa calefactora con matrices.

Características físicas

Material:	PP-R			
Color:	Gris Ral 9003 - Pantone 5513			
Tipo de unión:	Unión a socket			
Para tubería:	Tuboplus Clima Agua Helada Serie 3.2/SDR 7.4 Serie 5/SDR 11			
Normatividad:	UNE-EN ISO 15874. Parte 3. Accesorios - RP 01.0 - RP 01.58			
Características diferenciadoras	 Resistente a los procesos de desinfección Protección antimicrobiana Protección uv 			
Temperatura máx. de trabajo:	95 °C a 4 kg/cm²			
Presión máxima de trabajo:	39.2 kg/cm ² a 10 °C			

Cople

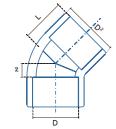
Código	d	D1	D2	L	z
201163*	20	20	28.5	32.8	15
280519	25	25	35.6	36.6	16.7
280520	32	32	44.8	42	20
280521	40	40	54.4	45.8	21.3
280522	50	50	67.4	53	23
280523	63	63	84	63.1	28.3
280524	75	75	101	67.5	28.6
280525	90	90	116.2	71.8	33
280526	110	110	142.7	98.8	43.4
280527	125	120	162	89.4	42
			•		



Codo a 90°

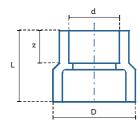
*Producto sobre pedido.

Código	d	D1	D2	L	z
280528*	20	20	20	26.5	11
280529	25	25	25	29.7	12.5
280530	32	32	32	34.1	16.1
280531	40	40	40	40.5	22.4
280532	50	50	50	47.5	26
280533	63	63	63	60.1	32.4
280534	75	75	75	70.9	39.5
280535	90	90	90	86	50
280536	110	110	110	103.5	61.4
280537	125	125	125	114.5	69.8

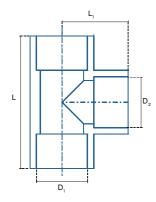


Unidades: mm

Accesorios



Codo a 45°


	Código	d	D2	D2	L	z
	280538*	20	20	20	20.7	5.5
	280539	25	25	25	24	6.4
	280540	32	32	32	28.4	7.7
	280541	40	40	40	32	10.6
	280542	50	50	50	37.4	13.9
	280543	63	63	63	40.4	12.7
	280544	75	75	75	52.8	21
	280545	90	90	90	58.6	23.6
	280546	110	110	110	68.8	26.6
Ī	280547	125	125	125	81.7	37

Reducción

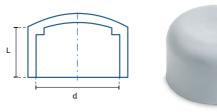
Código	d	D (mm)	d (mm)	L (mm)	Z (mm)
280548*	25 - 20	25	20	34.4	17.4
280549	32 - 20	32	20	37	14.4
280550	32 - 25	32	20	36.6	18
280551	40 - 25	40	25	39.4	17
280552	40 - 32	40	32	51.2	19
280553	50 - 32	50	32	40.3	18.4
280554	50 - 40	50	40	48	21.5
280555	63 - 25	63	25	63.5	18.4
280556	63 - 32	63	32	62	23.7
280557	63 - 40	63	40	62	23.1
280558	63 - 50	63	50	64	24.7
280559	75 - 40	75	40	66.7	23.3
280560	75 - 50	75	50	66.7	23.3
280561	75 - 63	75	63	71.2	30.5
280562	90 - 63	90	63	70	29
280563	90 - 75	90	75	77	32
280564	110 - 63	110	63	73	26
280565	110 - 75	110	75	77.2	31.2
280566	110 - 90	110	90	94.5	35.5
280567	125 - 110	125	110	115	38.5

Tee

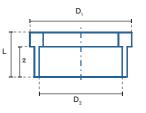
Código	d	D ₁ (mm)	D ₂ (mm)	L (mm)	L ₁ (mm)
280568*	20	20	20	52.6	26.3
280569	25	25	25	62.2	31.1
280570	32	32	32	73.8	36.9
280571	40	40	40	84	42
280572	50	50	50	99.8	49.9
280573	63	63	63	125.4	62.7
280574	75	75	75	141.2	70.6
280575	90	90	90	172.4	86.2
280576	110	110	110	203.4	101.7
280577	125	125	125	226	113

Couo u 1

Código	d	D ₁	D ₂	L	z
280578	25-20-25	25	20	59.2	29.3
280579	32-20-32	32	20	57.8	33.7
280580	32-25-32	32	25	62.2	34.4
280581	40-20-40	40	20	85.2	43.5
280582	40-25-40	40	25	86.6	41.4
280583	40-32-40	40	32	86.6	41.4
280584	50-25-50	50	25	78.2	43.27
280585	50-32-50	50	32	92.6	45.2
280586	50-40-50	50	40	92.4	48.5
280587	63-25-63	63	25	91.8	49.6
280588	63-32-63	63	32	91.6	50.9
280589	63-40-63	63	40	109.2	53.5
280590	63-50-63	63	50	110	56.9
280591	75-32-75	75	32	140	60
280592	75-40-75	75	40	106	60
280593	75-50-75	75	50	120	61.8
280594	75-63-75	75	63	132.4	68.3
280595	90-50-90	90	50	163	80
280596	90-63-90	90	63	158	110
280597	90-75-90	90	75	158	79.3
280598	110-63-110	110	63	183	130
280599	110-75-110	110	75	183	96.1
280600	110-90-110	110	90	183	90


L D₂

Tapón


Tee reducida

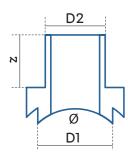
Código	d	L
280601*	20	25
280602	25	24.5
280603	32	29
280604	40	33.6
280605	50	42
280606	63	48
280607	75	51.24
280608	90	61.49
280609	110	69
280610	125	75.65

Portabridas

Código	D ₁	D ₂	L	z
280611	40	62.4	25.2	16.2
280612	50	88	31.7	19
280613	63	97	35.5	21
280614	75	116.2	38.4	24.4
280615	90	134.8	43.9	28
280616	110	159.6	49.5	30
280617	125	184.4	52	33

*Producto sobre pedido.
Unidades: mm

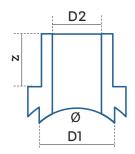
*Producto sobre pedido.


Unidades: mm

Páginas | 78 · 79

Rotoplas

Montura derivación macho PP

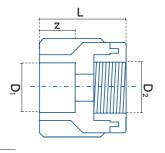


Código	D	D1 (mm)	D2 (mm)	D tubo (mm)	Z (mm)	Código	D	D1 (mm)	D2 (mm)	D tubo (mm)	Z (mm)
280834	20-50	32	20	50	25	280856	32-160	32	32	160	25
280835	20-63	32	20	63	25	280857	32-200	32	32	200	25
280836	20-75	32	20	75	25	280858	40-90	50	40	90	35
280837	20-90	32	20	90	25	280859	40-110	50	40	110	35
280838	20-110	32	20	110	25	280860	40-125	50	40	125	35
280839	20-125	32	20	125	25	280861	40-160	50	40	160	35
280840	20-160	32	20	160	25	280862	40-200	50	40	200	35
280841	20-200	32	20	200	25	280863	40-250	50	40	250	35
280842	25-50	32	25	50	25	280864	40-315	50	40	315	35
280843	25-63	32	25	63	25	280865	50-90	50	50	90	35
280844	25-75	32	25	75	25	280866	50-110	50	50	110	35
280845	25-90	32	25	90	25	280867	50-125	50	50	125	35
280846	25-110	32	25	110	25	280868	50-160	50	50	160	35
280847	25-125	32	25	125	25	280869	50-200	50	50	200	35
280848	25-160	32	25	160	25	280870	50-250	50	50	250	35
280849	25-200	32	25	200	25	280871	50-315	50	50	315	35
280850	32-50	32	25	50	25	280872	63-110	63	63	110	40
280851	32-63	32	32	63	25	280873	63-125	63	63	125	40
280852	32-75	32	32	75	25	280874	63-160	63	63	160	40
280853	32-90	32	32	90	25	280875	63-200	63	63	200	40
280854	32-110	32	32	110	25	280876	63-250	63	63	250	40
280855	32-125	32	32	125	25	280877	63-315	63	63	315	40

Montura derivación hembra PP

Código	D	D1 (mm)	D2 (mm)	D tubo (mm)	Z (mm)	Código	D	D1 (mm)	D2 (mm)	D tubo (mm)	Z (mm)
280878	20-50	32	20	50	25	280897	32-90	32	32	90	25
280879	20-63	32	20	63	25	280898	32-110	32	32	110	25
280880	20-75	32	20	75	25	280899	32-125	32	32	125	25
280881	20-90	32	20	90	25	280900	32-160	32	32	160	25
280882	20-110	32	20	110	25	280901	32-200	32	32	200	25
280883	20-125	32	20	125	25	280902	40-90	40	40	90	35
280884	20-160	32	20	160	25	280903	40-110	40	40	110	35
280885	20-200	32	20	200	25	280904	40-125	40	40	125	35
280886	25-50	32	25	50	25	280905	40-160	40	40	160	35
280887	25-63	32	25	63	25	280906	40-200	40	40	200	35
280888	25-75	32	25	75	25	280907	40-250	40	40	250	35
280889	25-90	32	25	90	25	280908	40-315	40	40	315	35
280890	25-110	32	25	110	25	280909	50-90	50	50	90	35
280891	25-125	32	25	125	25	280910	50-110	50	50	110	35
280892	25-160	32	25	160	25	280911	50-125	50	50	125	35
280893	25-200	32	25	200	25	280912	50-160	50	50	160	35
280894	32-50	32	32	50	25	280913	50-200	50	50	200	35
280895	32-63	32	32	63	25	280914	50-250	50	50	250	35
280896	32-75	32	32	75	25	280915	50-315	50	50	315	35

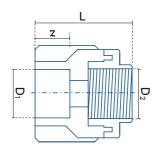
Accesorios mixtos soldar-roscar


Accesorios en el cual la unión se realiza mediante la conexión de elementos roscados de latón insertados en el cuerpo plástico del accesorio combinado con terminaciones que permiten su unión por unión a socket.

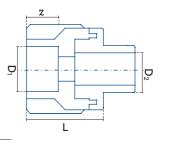
Características físicas

Material:	PP-R + latón					
Color:	Gris					
Tipo de unión:	Unión a socket + rosca metálica					
Para tubería:	Tuboplus Clima Agua Helada Serie 3.2/SDR 7.4 Serie 5/SDR 11 Serie 5/SDR 17					
Normatividad:	UNE-EN ISO 15874. Parte 3. Accesorios - RP 01.0 - RP 01.58					
Características diferenciadoras	Resistente a los procesos de desinfección Protección antimicrobiana Protección uy					
Temperatura máx. de trabajo:	95 °C a 4 kg/cm²					
Presión máxima de trabajo:	39.2 kg/cm² a 10 °C					

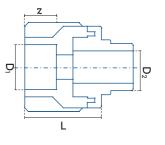
Conector R.H.


Código	DN	D ₁	D ₂	L	z
280618*	20 mm - 1/2"	20	1/2"	38.3	15.2
280619	25 mm - 1/2"	25	1/2"	41.5	18
280620	25 mm - 3/4"	25	3/4"	40	17.4
280621	32 mm - 3/4"	32	3/4"	46	20

Conector R.H. tuerca hex.

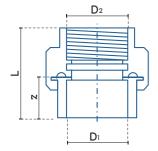

Código	DN	D ₁	D₂	L	z
280622	32 mm - 1"	32	1"	52.3	17
280623	40 mm - 1 1/4"	40	1 1/4"	64.3	23.3
280624	50 mm - 1 1/2"	50	1 1/2"	67.6	24
280625	63 mm - 2"	63	2"	76.2	28
280626	75 mm - 2 1/2"	75	2 1/2"	83	29.8
280627	90 mm - 3"	90	3"	98	35
280628	110 mm - 4"	110	4"	101	42

Conector R.M. PP


Código	DN	D ₁	D ₂	L	z
280629*	20 mm - 1/2"	20	1/2"	50.3	15.2
280630	20 mm - 3/4"	20	3/4"	56.5	17.4
280631	25 mm - 1/2"	25	1/2"	53.5	18
280632	25 mm - 3/4"	25	3/4"	53	17.4
280633	32 mm - 3/4"	32	3/4"	59	20

Conector R.M. tuerca hex.

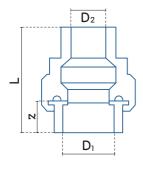
Código	DN	D ₁	D ₂	L	z
280634	32 mm - 1"	32	1"	65	20
280635	40 mm - 1 1/4"	40	1 1/4"	81.6	23.3
280636	50 mm - 1 1/2"	50	1 1/2"	86.4	24
280637	63 mm - 2"	63	2"	101.2	28
280638	75 mm - 2 1/2"	75	2 1/2"	100.5	29.8
280639	90 mm - 3"	90	3"	125	35
280640	110 mm - 4"	110	4"	133	42



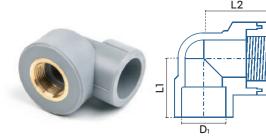
*Producto sobre pedido.

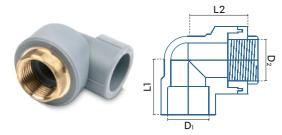
Unidades: mm

Rotoplas



Tuerca unión R.H.


Código	DN	D ₁	D ₂	L	z
280641*	20 mm - 1/2"	20	1/2"	38	16
280642	25 mm - 3/4"	25	3/4"	44.4	17.3
280643	32 mm - 1"	32	1"	45.1	18.6
280644	40 mm - 1 1/4"	40	1 1/4"	47.7	22
280645	50 mm - 1 1/2"	50	1 1/2"	48.1	24
280646	63 mm - 2"	63	2"	64	29.5
280647	75 mm - 2 1/2"	75	2 1/2"	79	32
280648	90 mm - 3"	90	3"	75.1	36.3
280649	110 mm - 4"	110	4"	94	39


Tuerca unión R.M.

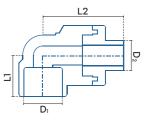
Código	DN	D ₁	D ₂	L	z
280650*	20 mm - 1/2"	20	1/2"	50.3	16
280651	25 mm - 3/4"	25	3/4"	57	17.3
280652	32 mm - 1"	32	1"	57.14	18.6
280653	40 mm - 1 1/4"	40	1 1/4"	63.35	22
280654	50 mm - 1 1/2"	50	1 1/2"	66.14	24
280655	63 mm - 2"	63	2"	76.7	28.6
280656	75 mm - 2 1/2"	75	2 1/2"	100.5	32
280657	90 mm - 3"	90	3"	95.5	36.3
280658	110 mm - 4"	110	4"	118	39


Codo a 90° R.H. PP

Código	DN (mm)	D ₁	D ₂	L ₁	L ₂
280916	20 - 1/2"	20	1/2"	53	34
280917	25 - 1/2"	25	1/2"	59	36
280918	25 - 3/4"	25	3/4"	59	36
280919	32 - 3/4"	32	3/4"	72	38

Codo a 90° к.н. hexagonal рр

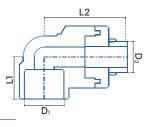
Código	DN (mm)	D ₁	$D_{\scriptscriptstyle 2}$	L,	L ₂
280920	32 - 1"	32	1"	72	48


Codo a placa PP

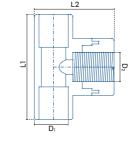
Código	DN (mm)	D ₁	D ₂	L ₁	L ₂
280921	20 - 1/2"	20	1/2"	28	37
280922	25 - 1/2"	25	1/2"	28	41

*Producto sobre pedido. Unidades: mm

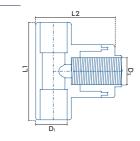
Codo a 90° R.M. PP


Código	DN (mm)	D ₁	D ₂	L ₁	L ₂
280923	20 - 1/2"	20	1/2"	53	46
280924	20 - 3/4"	20	3/4"	59	51
280925	25 - 3/4"	25	3/4"	59	51
280926	32 - 3/4"	32	3/4"	72	53

Codo a 90° R.M. hexagonal PP

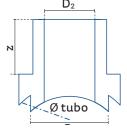

Código	DN (mm)	D ₁	D ₂	L ₁	L ₂
280927	32 - 1"	31	1"	72	63

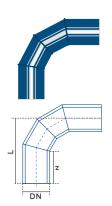
Tee R.H. PP


Código	DN (mm)	D ₁	$D_{_2}$	L ₁	L ₂
280928	20 - 1/2"	20	1/2"	59	45
280929	25 - 1/2"	25	1/2"	65	51
280930	25 - 3/4"	25	3/4"	65	51
280931	32 - 3/4"	32	3/4"	88	59

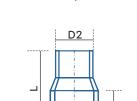
Tee R.H. hexagonal PP

Código	DN (mm)	D ₁	D_2	L ₁	L ₂
280932	32 - 1"	32	1"	88	69




Montura R.H.

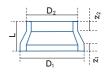
Código	Descripcion	Ø	Lī	D	D1	D2
280659	40 x 25 mm x 1/2 npt	40-1/2"	38	40	25	1/2"
280660	40 x 25 mm x 3/4 npt	40-3/4"	39	40	25	3/4"
280661	50 x 25 mm x 1/2 npt	50-1/2"	38	50	25	1/2"
280662	50 x 25 mm x 3/4 npt	50-3/4"	39	50	25	3/4"
280663	63 x 25 mm x 1/2 npt	63-1/2"	38	63	25	1/2"
280664	63 x 25 mm x 3/4 npt	63-3/4"	39	63	25	3/4"
280933	75 x 25 mm x 1/2 npt	75-1/2"	38	75	25	1/2"
280934	75 x 25 mm x 3/4 npt	75-3/4"	39	75	25	3/4"
280665	75 x 32 mm x 1 npt	75-1"	58	75	32	1"
280935	90 x 25 mm x 1/2 npt	90-1/2"	38	90	25	1/2"
280936	90 x 25 mm x 3/4 npt	90-3/4"	39	90	25	3/4"
280666	90 x 32 mm x 1 npt	90-1"	58	90	32	1"
280937	110 x 25 mm x 1/2 npt	110-1/2"	38	110	25	1/2"
280938	110 x 25 mm x 3/4 npt	110-3/4"	39	110	25	3/4"
280941	110 x 32 mm x 1 npt	110-1"	58	110	32	1"
280939	125 x 25 mm x 1/2 npt	125-1/2"	38	125	25	1/2"
280940	125 x 25 mm x 3/4 npt	125-3/4"	39	125	25	3/4"
280942	125 x 32 mm x 1 npt	125-1"	58	125	32	1"


Accesorios de unión a tope

Código	S5 DN (mm)	L (mm)	z
280805	160	297	100
280806	200	450	110
280807	250	625	140
280967	315	481	160

Codo soldar a tope a 90°

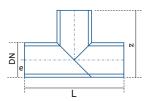
Reducción soldar a tope


	S	5	L				S	8
Código	D1 (mm)	D2 (mm)	(mm)	z1	z2	Código	D1 (mm)	D2 (mm)
280808	160	110	270	100	80	280789	160	110
280809	200	160	365	120	100	280790	200	160
280810	250	200	440	140	120	280791	250	200
280811	315	250	531	160	140	280792	315	250
	•					280793	355	315

z2

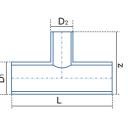
470 200 160

Reducción corta soldar a tope



	\$5		1					\$8	
Código	D1 (mm)	D2 (mm)	(mm) (mm) z1 z		z2	z2 Código		D1 (mm)	D2 (mm
280949	160	110	170	45	80		280955	160	110
280950	160	125	170	45	80		280956	160	125
280951	200	110	315	60	80		280957	200	110
280952	200	125	315	60	80		280958	200	125
280953	200	160	145	60	50		280959	200	160
280954	315	200	230	80	50		280960	315	200

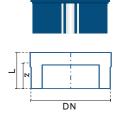
Tee soldar a tope


Código	S5 DN (mm)	L (mm)	z 1	z2	
280812	160	380	190	110	
280813	200	460	230	130	
280814	250	530	265	140	
280815	315	920	317	160	

Código	S8 DN (mm)	L (mm)	21	z2
280794	160	380	190	110
280795	200	460	230	130
280796	250	530	265	140
280797	315	920	317	160
280798	355	715	357	180

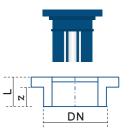
Tee reducida soldar a tope

Código	S DN (5 mm)	_		z2
280969	160	110	350	100	140
280970	160	125	350	120	80
280971	200	110	460	160	140
280972	200	125	440	157	80
280973	200	160	460	130	100
280816	315	160	450	145	100
280817	315	200	450	145	100
	s	8			
280799	315	160	450	145	100
280800	315	200	450	145	100



Tapón corto soldar a tope

Código	S5 DN (mm)	L (mm)	z (mm)
280943	160	73	47
280944	200	90	60
280945	315	60	20


Código	S8 DN (mm)	L (mm)	z (mm)
280946	160	73	47
280947	200	90	60
280948	315	50	20

Portabridas corto

Código	S5 DN (mm)	L (mm)	z (mm)
280961	160	74.5	49.5
280962	200	123	50
280963	315	168	133

Código	S8 DN (mm)	L (mm)	z (mm)
280964	160	74.5	49.5
280965	200	123	50
280966	315	168	143

Accesorios extra

Termómetro vertical con termoposo

Características físicas

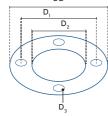
Material escala:	Alumunio
Material de estuche:	ABS
Material rosca:	Latón
Tipo de rosca:	1/2"
Uso:	Dispositivo para medición de temperatura de fluidos dentro de un sistema hidráulico.
Presión máxima de trabajo:	710 psi
Rango de temp. de trabajo:	-30 / 80 °C
Lontitud termopaso:	2" a 4"
Normatividad:	ASME B40.200

Código	Medida	
280702	1/2"	

Manómetro de carátula

Características físicas

Acero inoxidable 304 tipo bayoneta
Latón o Acero inox 316L
Acrílico
Acero inox (0.018)
Inferior
1/4" NPT externa
Dispositivo para medición de temperatura de fluidos dentro de un sistema hidráulico.
0 a 600 psi
1.0 o 2.0%


Código	Medida	d
280701	1/4"	2 1/2" (diámetro carátula)

Bridas con alma de acero

Características físicas

Material:	Acero con recubrimiento de PP	
Color:	Negro/gris	
Series:	Serie 3.2/SDR 7.4 Serie 5/SDR 11	
Normas:	UNE-EN ISO 21003 ASTM F2389 *10 RP 01.78 DIN 8077 DIN 8078	
Aplicaciones:	 Sistemas de distribución de agua sanitaria, calefacción y climatización Instalaciones de fluidos a altas y bajas temperaturas Redes de tipo civil e industrial Instalaciones de sistemas de aire comprimido Instalaciones de agua refrigerada 	

Código	DN (tubo)	DN	D ₁	D₂	$D_{\scriptscriptstyle 3}$	z
280780	250	250	403	350	287.5	30
280781	315	300	467	400	3373	34

Empaque de neopreno

Características físicas

Material:	Neopreno
Color:	Negro
Uso:	Proporciona un cierre hermético entre conexiones
Rango de temp. de trabajo:	-20° a 90° C
Presión máxima de trabajo:	150 psi
Orificios del perno:	4 y 8

Código	d
280737	40
280738	50
280739	63
280740	75
280741	90

Código	d
280742	110
280743	160
280744	200/225
280745	200/280
280746	315

Empaque estilo 3760

Características físicas

Material: Lámina de fibra sintética con un aglomerante de caucho		
Color:	Azul / Blanco	
Uso:	Accesorio para la prevención de fugas a través de expansión	
Temperatura de trabajo:	-70 °C mín.	
Presión máxima de trabajo:	500 psi máx.	

Código	Medida	Espesor	Código	Medida	Espesor	Código	Medida	Espesor
280747	40	1/16"	280754	200/225	1/16"	280761	90	1/8"
280748	50	1/16"	280755	250/280	1/16"	280762	110	1/8"
280749	63	1/16"	280756	315	1/16"	280763	160	1/8"
280750	75	1/16"	280757	40	1/8"	280764	200/225	1/8"
280751	90	1/16"	280758	50	1/8"	280765	250/280	1/8"
280752	110	1/16"	280759	63	1/8"	280766	315	1/8"
280753	160	1/16"	280760	75	1/8"			

Acople ranurado

Características físicas

Características rísicas		
Material:	Hierro dúctil	
Material empaque:	EPDM o Nitrilo	
Color:	Anaranjado	
Uso:	Accesorio que permite la unión de tuberías, conexiones, válvulas y accesorios ranurados	
Rango de temp. de trabajo:	-29 a +82 °C	
Presión máxima de trabajo:	500 psi máx.	

Código	Medida
280704	2"
280705	3"
280706	4"

Rotoplas

Junta expansión hule anti-vibratoria

Características físicas

Material: Neopreno con refuerzo de Nylon y acero al carbón	
Color: Tuercas indistinto/empaque negro	
Uso:	Juntas de expansión de hule que elimina las vibraciones de tuberías
Presión mín. de trabajo:	150 psi

Código	d
280674	4" (100 mm)
280675	6" (150 mm)
280676	8" (200 mm)

Reducción bushing 3000, en acero al carbón

Características físicas

Material:	Acero al carbón forjado	
Color:	Negro/gris	
Uso:	Conexión de alta presión fabricada en acero al carbón 3000#	
Tipo de rosca:	NPT interna/externa	
Presión de trabaio:	3000 libras	

Código	Medida
280696	1" a 1/4"
280697	3/4" a 1/4"
280698	1/2" a 1/4"

Reducción bushing 150, en hierro maleable

Características físicas

Material:	Hierro maleable	
Color:	Negro/gris	
Descripción:	Conexión fabricada en hierro maleable maleable/acero negro 150#	
Tipo de rosca:	NPT interna/externa	
Presión de trabaio:	150 libras	

Código	Medida
280693	1" a 1/4"
280694	3/4" a 1/4"
280695	1/2" a 1/4"

Tubo de sifón recto en acero al carbón

Características físicas

Material:	Acero al carbón
Color: Negro/gris	
Descripción:	Tubo de sifón sin unión para conexión de manómetro
Tipo de rosca:	NPT externa
Rango de temp. de trabajo:	-20 / 300 °C
Presión de trabajo:	1.450 psi

Código	Medida
280699	1/4" a 1/4"

Válvula tipo mariposa PP

Características físicas

PP
EPDM
Dispositivo que regula el flujo de un fluido en un sistema hidráulico
-20° a 80° C
100 psi
ANSI B16.5

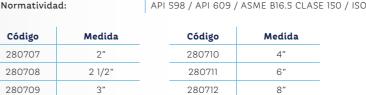
Código	Medidas	Código	Medidas
280723	50	280726	90
280724	63	280727	110
280725	75	280728	125

Válvula tipo mariposa PP con actuador

Características físicas

Material (cuerpo):	PP
Material (asiento):	EPDM
Uso:	Dispositivo que regula el flujo de un fluido en un sistema hidráulico
Rango de temp. de trabajo:	-20° a 80° C
Presión máxima de trabajo:	100 psi
Cumplimiento normativo:	ANSI B16.5
Accesorios:	Actuador neumático simple o doble efecto

Código	Medida	Transmisor
280731	1/2"	4 - 20 mA


Actuador para Válvula mariposa PP con

Código	Medida	Torque
280730	1/2"	150 a 300 pg/lb
280736	1/2"	400 a 2000 pg/lb

Válvula tipo mariposa hierro ductil

Características físicas

caracteristicas risicas	
Material (cuerpo):	Hierro dúctil
Material (interior):	Fierro y acero inoxidable
Material (asiento):	BUNA, EPDM
Color:	Azul
Uso:	Dispositivo que regula el flujo de un fluido en un sistema hidráulico
Presión máxima de trabajo:	150 psi
Normatividad:	API 598 / API 609 / ASME B16.5 CLASE 150 / ISO 7005 PN 10/16

Conducción

Rotoplas

Válvula tipo mariposa hierro ductil con actuador

Características físicas

Material (cuerpo):	Hierro dúctil	
Material (interior):	Fierro, acero inoxidable y nylon	
Material (asiento):	BUNA, EPDM	
Color:	Azul	
Uso:	Dispositivo que regula el flujo de un fluido en un sistema hidráulico	
Presión máxima de trabajo:	150 psi	
Accesorios:	Actuador neumático simple o doble efecto	
Normatividad aplicable:	API 598 / API 609 / ASME B16.5 CLASE 150 / ISO 7005 PN 10/16	

Código	Medidas	Código	Medidas
280677	2"	280680	4"
280678	2 1/2"	280681	6"
280679	3"	280682	8"

Válvula tipo aguja para alta presión (6000 psi), acero al carbón

Características físicas

Caracteristicas risicas	
Material:	Acero al carbón con recubrimiento electrolítico
Color:	Natural
Uso:	Dispositivo que permite una regulación de flujo efectiva a todas las presiones de trabajo
Tipo de rosca:	NPT interna (1/4" entrada y salida)
Rango de temp. de trabajo:	-40° a 260° C
Presión de trabajo:	10 000 psi
Normatividad aplicable:	NACE MR-0175

Código	Medida	Ø Carátula
280700	1/4"	2-1/2"

Filtro tipo "Y" hierro ductil, extremos bridados

Características físicas

Material:	Hierro dúctil
Color:	Azul
Descripción:	Dispositivo cuya función es separar sólidos de un fluido que fluyen por un sistema hidráulico mediante un filtro o malla.
Tipo de unión:	Bridada
Clase:	#150
Normatividad aplicable:	API 598 / ASME B16.5-2009

Código	Medida	Clase	Código	Medida	Clase	Código	Medida	Clase
280683	2"	125	280686	6"	125	280689	3"	150
280684	3"	125	280687	8"	125	280690	4"	150
280685	4"	125	280688	2"	150	280691	6"	150
						280692	8"	150

Sensor de flujo con paleta y conexión roscado, macho de 1"

Características físicas

Descripción:	Dispositivo para control de flujo de un sistema hidráulico. Switch Fluj c/paleta 1, 2, 3 y 6"			
Protección:	IP 20			
Temp. máxima de trabajo:	80 °C			
Presión de trabajo:	145 nsj			

Código	Medida
280703	1"

Aislante térmico para tubería

Características físicas

	Ancho: 5.8 m	6
Dimensiones:	Espesor: mínimo 9 mm	
	Longitud: De acuerdo a diámetro de tubo	
Uso:	Encamisado para tubería AC	
Material:	TPE (elastómeros termoplásticos)	
Color:	Negro / Gris oscuro	Cañuela
Características adicionales:	Inhibe el crecimiento de moho, resistencia al crecimiento de hongos y bacterias, resistencia al ozono.	
Conductividad térmica (aislamiento):	Cumplimiento con ASTM C518	
Pearmeabilidad al vapor de agua:	Cumplimiento con ASTM C209	
Normatividad aplicable:	API 598 / API 609 / ASME B16.5 CLASE 150 / ISO 7005 PN 10/16	

Código	D Tubo (mm)	Espesor (mm)	Longit	ud (m)	
			Cañuela	Rollo (mín.)	
280767	20	13	2	100	
280768	25	13	2	100	
280769	32	13	2	100	
280770	40	19	2	100	
280771	50	19	2	100	
280772	63	19	2	100	
280773	75	19	2	100	
280774	90	19	2	100	
280775	110	19	2	100	
280776	125	19	2	100	

Rollo

Diago

Código	Longitud (m)	Espesor (mm)	Ancho (m)
280777	39	25	1
280778	52	19	1
280779	78	13	1

Tuboplus para Aire Acondicionado

Tuboplus Clima | Agua Helada

Garantía Rotoplas

A través de los años, Rotoplas ha trabajado en entregar la mejor calidad en cada una de sus soluciones, esto con la finalidad de ofrecer una experiencia satisfactoria a sus clientes en el uso de los productos y servicios.

Es por ello que la gama de artículos de Rotoplas cuentan con un respaldo y garantía en el funcionamiento y fabricación de los mismos.

Este Catálogo es propiedad de Rotoplas, S.A. de C.V. El contenido no puede ser reproducido, transferido o publicado sin el permiso por escrito de Rotoplas, S.A. de C.V. La responsabilidad de Rotoplas, S.A. de C.V. relacionada al presente Catálogo se limita a informar a los usuarios sobre las características de los productos y su mejor utilización. En ningún caso pretende enseñar el oficio de instalador, diseño y cálculo de las instalaciones. Las imágenes son simuladas, el color del producto puede variar y los pesos y medidas son aproximados. Rotoplas, S.A. de C.V. se reserva el derecho a modificar parcial o totalmente el presente Catálogo y los productos que presenta sin previo aviso. Para mayor información contacte a su representante de ventas. © Rotoplas, 2021.